Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Castor (Ricinus communis L.) Plant: Medicinal, Environmental and Industrial Applications
Current Issue
Volume 3, 2018
Issue 5 (October)
Pages: 78-91   |   Vol. 3, No. 5, October 2018   |   Follow on         
Paper in PDF Downloads: 51   Since Oct. 10, 2018 Views: 1034   Since Oct. 10, 2018
Authors
[1]
Aliyu Ahmad Warra, Centre for Entrepreneurial Development, Federal University, Gusau, Nigeria.
Abstract
Ricinus communis L. a bioenergy crop shows great potential for many domestic and industrial uses. The bean of the castor plant (Ricinus communis, L) has been recognized since antiquity in many parts of the world for its value. The potential of castor plant products in industrial and domestic uses made castor a valuable resource with multiple applications. Due to organic richness and less side effects of medicinal plants, researches have been in the increase. Despite its toxic effects, Ricinus communis L. has been used in many parts of the world for treatment of various ailments. In this review an attempt was made to have insight at developing commercial products from castor plant. Concise overview of present findings and literature reports are in favour of steps for the development of cultivation of the plant and better processing of its products that could substantially be useful for environmental and industrial applications. The review mainly centred on the prospects for castor in phytoremediation of contaminated lands, medicinal uses, industrial and domestic applications of its products. It showed that the plant has wide applications in environmental phytoremediation, generation of feed-grade supplements, production of bioenergy from biofuels, preparation of cleansing agents, polymer and composites production, industrial preparation of polyurethanes, application in textile and dyes, production of corrosion inhibitors, medicinal and pharmaceutical applications, possession of antimicrobial activity, possession of phytochemicals, applications in biotechnology, nanotechnology and conversion of waste to wealth.
Keywords
Ricinus communis L., Environmental, Domestic, Industrial, Bioresource
Reference
[1]
K. Satyagopal, S. N. Sushil, P. Jeyakumar, G. Shankar, O. P. Sharma, D. R. Boina, R. A. Sain, K. S. Kapoor, S. Arya, S. Kumar, C. S. Patni, D. Suresh, K. Ekabote, R. M. Lakshminarayana, H. Narayanaswamy, B. K. Shivanna. AESA based IPM package for Castor. (2014). p38.
[2]
P. L. Ladda, R. B. Kamthane, Ricinus communis L. (Castor): An Overview. International Journal of Research in Pharmacology and Pharmacotherapeutics. (2014) 3 (2): 136-144.
[3]
M. G. Mendes, C. D. Santos Junior, A. C. C. Dias, A. M Bonetti. Castor bean (Ricinus communis L.) as a potential environmental bioindicator. Genetic and Molecular Research. (2015). 14 (4): 12880-12887.
[4]
M. N. V. Prasad, B. R. Kiran Ricinus communis L. (Castor bean), a potential multi-purpose environmental crop for improved and integrated phytoremediation. TheEuroBiotech Journal. (2017) 1 (2): 1-16.
[5]
J. Jena, A. K. Gupta. Ricinus communis Linn: a phytopharmacological review International Journal of Pharmacy and Pharmaceutical Sciences. (2012). 4 (40) 25-29.
[6]
P. Borg, G. Lê, S. Lebrun, B. Pées, Example of industrial valorisation of derivative products of Castor oil. OCL (2009). 16 (4): 211-214.
[7]
A. A. Annongu, J. K Joseph. Proximate Analysis of Castor Seeds and Cake. Journal of Applied Science and Environmental Management. (2008). 12 (1): 39-41.
[8]
Raw Materials Research and Development Council. Survey Report of Ten Selected Agro Raw Materials in Nigeria: Castor. Raw Materials Research and Development Council (Federal Ministry of Science and Technology), Abuja, Nigeria. (2009). p28.
[9]
V. N. Onyia, F. U. Offiah, E. I. Eze, G. E. Ilo, N. C. Onwubiko. Proximate and mineral composition of some Nigerian castor (Ricinus communis L.) accessions. Academia Journal of Biotechnology. (2015) 3 (5): 093-096.
[10]
B. Pankhaniya, R. N. Desai, B. H. Shah. Synthesis of polyurethane solution (Castor oil based polyol for polyurethane). IJARIIE. (2015) 1 (2): 37-42.
[11]
B. Z. Salihu, A. K. Gana, B. O. Apuyor. Castor Oil Plant (Ricinus communis L.): Botany, Ecology and Uses. International Journal of Science and Research. (2014) 3 (5): 1333-1341.
[12]
U. Anastasia, O. Sortinoa, S. L. Cosentinoa, C. Patanèb. Seed yield and oil quality of perennial castor bean in a Mediterranean environment. International Journal of Plant Production. (2015) 9 (1): 99-118.
[13]
M. Baishya, M. C. Kalita. Phytoremediation of crude oil contaminated soil using two local varieties of castor oil plant (Ricinus communis L.) of Assam. International Journal of Pharma and Bio Sciences. (2015). 6 (4): 1173-1182.
[14]
H. Huang, N. Yu, L. Wang, D. K. Gupta, Z. He, K. Wang, Z. Zhu, X. Yan, T. Li, X. EYang The phytoremediation potential of bioenergy crop Ricinus communis L. for DDTs and cadmium co-contaminated soil, Bioresource. Technolology. (2011). 102 (23): 11034-11038.
[15]
F. A. Perdomo, A. A. Acosta-Osoriob, G. Herrera, J. F. Vasco-Leal, J. D. Mosquera-Artamonov, B. Millan-Malo, M. E. Rodriguez-Garcia, Physicochemical characterization of seven Mexican Ricinus communis L. seeds & oil contents. Biomass and Bioenergy. (2013) 48: 17-24.
[16]
A. A. Warra. Physico-Chemical and GC/MS Analysis of wild Castor (Ricinus communis L.) Seed Oil. Applied Science Reports. (2015a) 9 (3): 123-128.
[17]
A. A. Warra. Physico-Chemical and GC/MS Analysis of Castor Bean (Ricinus communis L.) Seed Oil. Chemistry and Materials Research. (2015b). 7 (2): 56-60.
[18]
J. V. Madeira Jr., J. A. Macedo, G. A. Macedo. Detoxification of castor bean residues and the simultaneous production of tannase and phytase by solid-state fermentation using Paecilomycesvariotii. Bioresource Technology. (2011) 102: 7343–7348.
[19]
R. L. S. Lima, L. S. Severino, L. R., Sampaio, V. Sofiatti, J. A. Gomes, N. E. M Beltrão Blends of castor meal and castor husks for optimized use as organic fertilizer. Industrial Crops and Products (2011) 33: 364–368.
[20]
B. S. Lacerda, G. LA. Makishi, H. N. M., Chambib, A. M. Q. B. Bittante, C. A. Gomide, P. A. Costa, Paulo J. A. Sobral, P. J. A (2014). Castor Bean (Ricinus communis L.) Cake Protein Extraction by Alkaline Solubilization: Definition of Process Parameters. Chemical engineering transactions. 37: 775-780.
[21]
N. B. Ismail. Formulation of biogrease from castor waste. Bsc thesis Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang (2014).
[22]
F. A. Atiku, A. A. Warra, M. R. Enimola (2014a). FTIR spectroscopic analysis and fuel properties of wild castor (Ricinus communis L) seed oil. Open Science Journal of Analytical Chemistry. (2014a) 1 (1): 6-9.
[23]
F. A. Atiku, A. A. Warra, M. M. Bashar. FTIR analysis and fuel properties of castor (Ricinus communis L) bean oil. World Research Journal of Organic Chemistry. (2014b). 2 (1), 31-34.
[24]
A. W. AL-Harbawy, M. K. AL-Mallah. Production and Characterization of Biodiesel from seed oil of Castor (Ricinus communis L.) plants. International Journal of Science and Technology. (2014) 3 (9): 508-513.
[25]
Enontiemonria, E. V., Ayodeji, A., Lucky, A. P. A., Ogheneofego, O (2012). The Effects of Trans-Esterification of Castor Seed Oil Using Ethanol, Methanol and their Blends on the Properties and Yields of Biodiesel. International Journal of Engineering and Technology. 2 (10): 1734-1742.
[26]
J. Paguiligan, V. Villanueva. Agro-industrial production of lubricating oil and castor beans. Feasibility study. Mapúa Institute of Technology. School of Chemical Engineering and Chemistry (2005).
[27]
N. A. Tajuddin, N. H. Rosli, N. Abdullah, M. E. Mohd Firdaus Yusoff, J. Salimon. Estolide ester from Ricinus communis L. seed oil for biolubricant purpose. The Malaysian Journal of Analytical Sciences. (2014). 18 (1): 85-93.
[28]
E. V. Ndubuisi, J. I. Ugbeh, C. C. Iwuorah, O. M. Abayeh, O. J. Abayeh. Synthesis of a green detergent from castor seed (Ricinnus comminus) oil. Journal of Chemical Society of Nigeria. (2015). 40 (1): 76-82.
[29]
Mogose, I. N (2016). Extraction, characterization and optimization of castor oil from Castor seeds for production of synthetic detergent. Msc thesis. Research and Graduate School of Addis Ababa University.
[30]
A. G. Isah. Production of Detergent from Castor oil. Leonardo Journal of Practices and Technologies. (2006). 9: 153-160.
[31]
A. O. Gideon. Production of detergent from castor oil. Bsc Project School of engineering and engineering technology, Federal University of Technology, Minna, Nigeria. (2005).
[32]
A. A. Warra, I. G. Wawata, R. A. Umar, S. Y. Gunu Extraction of Oil from Castor Beans using n-hexane: Chemical Analysis and Transparent Soap Preparation. World Research Journal of Chemistry. (2013) 1 (2): 39-41.
[33]
B. P. Vibhute, R. R. Khotpal, V. Y. Karadbhajane, A. S. Kulkarni. Preparation of Maleinized Castor oil (MCO) By Conventional Method And its Application in the Formulation of Liquid Detergent. International Journal of ChemTech Research. (2013) 5 (4): 1886-1896.
[34]
L. M. Aguiar, L. E. Maekawa, A. Chung, M. R. G. Nassri. Evaluation of dentin cleansing by a detergent derived from castor oil (Ricinus communis) used as root canal irrigant: a scanning electron miscroscopy study. Rev Sul-Bras Odontol. (2010) 7 (4): 445-449.
[35]
A. C. Milanese, M. O. H. Cioffi, H. J. C. Voorwald (2011a). Mechanical behavior of castor oil-based polyurethane composites: reinforcement comparison. Proceedings of COBEM 21st Brazilian Congress of Mechanical Engineering. Pp 1-10.
[36]
A. C. Milanese, M. O. H. Cioffi. H. J. CVoorwald, (2011b). Mechanical behavior of natural fiber composites. Procedia Engineering 10: 2022–2027.
[37]
D. O. Castro, A. Ruvolo-Filho, E. Frollini. Hydroxyl-terminated polybutadiene and castor oil: impact modifier and coupling agents in biopolyethylenecuraua fibers composites. Proceedings of the 16th International Conference on Composite Structures. (2011). pp 1-2.
[38]
L. Karoline de Sousa, L. Aparecida de Castro Motta. Study of sisal reinforced castor oil polyurethane composites for use as wall panel. Proceedings of the 16th European conference on composite materials. (2014) Pp 1-6.
[39]
C., Merlini, G. M. O., Barra, D. P. P. Matth¨aus da Cunha, D. A. S., Silvia, B. G. S. Ramoa,, A. A. Pegoretti. Reducing the filler content of electrically conductive composites. Plastic Research Online. (2015) Pp 1-3.
[40]
L. Zhu, F. Jin, S. Park. Thermal Stability and Fracture Toughness of Epoxy Resins Modified with Epoxidized Castor Oil and Al2O3 Nanoparticles. Bulletin of. Korean Chemical Society. (2012) 33 (8): 2513-2516.
[41]
C. Thamaraichelvi, C. Priyatharsini, C. Barathiselvam. Development of Bio-Based Nanocomposite from Epoxidized Castor Oil, Layered Silicate and Their Characterization. IOSR Journal of Applied Chemistry. (2016) 9 (2): 26-29.
[42]
F. Malek, S. Giraud, P. Vroman, J. Isaad. New composite materials based on biosourced polyurethane: Elaboration and study of their thermal and mechanical properties. Journal of Materials and Environmental Science. (2016) 6 (11): 3217-3225.
[43]
J. L. Guimarães, A. C. T. Cursino, C. K. Saul, M. R. Sierrakowski, L. P. Ramos, K. G. Satyanarayana. Evaluation of Castor Oil Cake Starch and Recovered Glycerol and Development of “Green” Composites Based on Those with Plant Fibers. Materials. (2016) 9 (76): 1-18.
[44]
J. Shakina, A. Muthuvinothini. Development Studies of Biodegradable Pressure Sensitive Adhesives and Fiber Reinforced Polyester Composites from Castor Oil. International Research Journal of Pure andApplied Chemistry. (2015) 8 (4): 198-211.
[45]
X. Li, G. Du, S. Wang, Y. Guanxia. Physical and mechanical characterization of fiber and wall in castor (Ricinus communis L) Stalk. Bioresources. (2014) 9 (1): 1596-1605.
[46]
L. B. Tavares, C. V. Boas, G. R. Schleder, A. M. Nacas, D. S. Rosa, D. J Santos. Bio-based polyurethane prepared from Kraft lignin and modified castor oil. RESS PolymerLetters. (2016) 10 (11): 927–940.
[47]
Adogbo, G. M., Atiwurcha, V. E (2014). The Effects of Matrix Mixing on the Properties of Castor Oil Based Polyurethane Foams. IOSR Journal of Engineering. 4 (8): 1-6.
[48]
A. M. Chiorcea-Paquim, V. C. Diculescu, P. Cervini, E. T. G. Cavalheiro, A. M. O. Brett, (2014). Graphite-castor oil polyurethane composite electrode surfaces - AFM morphological and electrochemical characterisation, Journal of Electroanalytical Chemistry. 1-29.
[49]
J. Fiorelli, D. D. Curtolo, N. G. Barreroa, H. Savastano Jr., E. M. A. Pallone, R. Johnson (2012). Particulate composite based on coconut fiber and castor oil polyurethane adhesive: An eco-efficient product. Industrial Crops and Products. 40: 69-75.
[50]
S. Ibrahim, A. Ahmad, N. S. Mohamed. Characterization of Novel Castor Oil-Based Polyurethane Polymer Electrolytes. Polymers. (2015) 7: 747-759.
[51]
A. K. Yusuf, P. A. P. Mamza, A. S. Ahmed, U. Agunwa, Physico-Mechanical Properties of Rigid Polyurethane Foams Synthesized From Modified Castor Oil Polyols. International Journal of Scientific and Research Publications. (2016) 6 (7): 548-556.
[52]
M. Kumar, R. Kaur. Effect of Different Formulations of MDI on Rigid Polyurethane Foams based on Castor Oil. International Journal of Scientific Research and Reviews. (2013) 2 (1): 29-42.
[53]
L. Zhang. Structure-Property Relationship of Polyurethane Flexible Foam Made from Natural Oil Polyols. PhD thesis Faculty of the Graduate School of the University of Minnesota. (2008).
[54]
O. S. Ogunfeyitimi, A. O. Okewale, P. K. Igbokwe. The Use of Castor Oil as a Reactive Monomer in Synthesis of Flexible Polyurethane Foam. International journal of multidisciplinary sciences and engineering. (2012) 3 (10): 10-14.
[55]
I. A. Ajayi, O. M. Adenowo, O. O. Kolawole. Effect of Castor Oil as an Auxillary Stabilizer in the Production of Flexible Polyurethane Foams. IOSR Journal of Applied Chemistry. (2015). 8 (6): 51-55.
[56]
N. J. Sangeetha, A. M. Retna. Preparation of chain extended polyurethane and its composites based on castor oil and coir fiber. Green Chemistry and Technology Letters. (2015) 1 (1): 67-70.
[57]
Salisu, A. A., Said, M. D (2012). The use of castor oil as a flame retardant in polyurethane foam. Chemsearch Journal 3 (1): 24-27.
[58]
J. M. Cangemi, A. M. dos Santos, S. C. Neto, G. O. Chierice. Biodegradation of Polyurethane Derived from Castor Oil. Polímeros: Ciência e Tecnologia. (2008) 18 (3): 201-206.
[59]
E. R. Magdaluyo, Jr. C. M., Aranas, Jr., J. D. Masiglat. Influence of Castor Oil-Based Polyurethane on Physico-Chemical Properties of Calcium Silicate Cement. Philippine Journal of Science. (2011) 140 (1): 25-32.
[60]
J. H. S. Almeida Júnior, D. A. Bertuolb, A. Meneguzzia, C. A. Ferreiraa, F. D. R. Amado. Castor Oil and Commercial Thermoplastic Polyurethane Membranes Modified with Polyaniline: A Comparative Study. Materials Research. (2013) 16 (4): 860-866.
[61]
B. K. Gayki, P. V. Thorat, S. S. Tayde. A Review on Synthesis and Characterization of Castor Oil Based Polyurethane Adhesive. International Journal of Emerging Technology and Advanced Engineering. (2015) 5 (3): 95-97.
[62]
Gayki, B. K., Thorat, P. V (2013). Synthesis and Characterization of Castor Oil based Polyurethane Adhesive for Wood Substrates. International Journal of Science and Research. 4 (6): 605-607.
[63]
O. C. Pereira-Junior, S. C. Rahal, P. Iamaguti, S. L. Felisbino, P. T. Pavan, L. C. Vulcano. Comparison Between Polyurethanes Containing Castor Oil (Soft Segment) and Cancellous Bone Autograft in the Treatment of Segmental Bone Defect Induced in Rabbits. Journal of Biomaterials Applications. (2007) 21 (3): 283-297.
[64]
A. Imasuen, F. Inegbedion, C. Erhabor, Rehabber, M. OsuideIsolation and haracterization of Castor Seed Oil and Its Utilization Potential in the Production of Polyurethane Foam. Walailak Journal of Science and Technology. (2014). 11 (5): 421-427.
[65]
D. G. Williams. Castor oil - Natural Protection from Deadly Viruses. Complementary Newsletter. (1995) 6 (1).
[66]
V. Dharmalingam, A. K. Ramasamy, V. Balasuramanian. Chemical Modification on Reactive Dye Adsorption Capacity of Castor Seeds. E-Journal of Chemistry. (2011) 8 (S1): 335-343.
[67]
M. C. Tadesse. Synthesis of wetting agents from castor oil for the dyeing of cotton fabric. Applied Research Journal. (2015) 1 (1): 1-8.
[68]
A. G. Ede, A. G. Demissie. Bioactivity Guided Characterization of Biocides and Biodyes from Castor (RicinuscommuniusL.) Seed Oil. International Journal of Modern Biology and Medicine. (2013) 4 (2): 64-70.
[69]
H. A. Ali. Modification of Caster Oil and Study Its Efficiency as Corrosion Inhibitors in Formation Water Media. Engineering. (2017) 9, 254-262.
[70]
A. Begum, S. HariKrishna. Factorial design application for the Protection of mild steel from corrosive medium using Castor seed oil as inhibitor. International Journal of ChemTech Research. (2014) 6 (4): 2385-2390.
[71]
M. Omotioma, O. D. OnukwuliCorrosion inhibition of mild steel in 1. 0 M HCl with castor oil extract as inhibitor. International Journal of Chemical Science. (2016) 14 (1): 103-127.
[72]
M. Abdulwahab, A. P. I. Popoola, O. S. I. Fayomi. Inhibitive Effect by Ricinus communis on the HCl/H3PO4 Acid Corrosion of Aluminium Alloy. International Journal of Electrochemical Science. (2012) 7 (2012) 11706-11717.
[73]
S. Yas, S. Soni. Castor Oil as Corrosion Inhibitor for Iron in Hydrochloric acid. Oriental Journal of Chemistry. (2011) 27 (4): 1743-1746.
[74]
B. N. Inayor, O. O. Ibraheem. Assessing Ricinus communis L. (castor) whole plant parts for Phenolics and Saponins constituents for Medicinal and Pharmaceutical applications. International Journal of Advances in Pharmacy, Biology and Chemistry. (2014) 3 (4): 815-826.
[75]
C. I. Alugah, O. Ibraheem. Whole plant screenings for flavonoids and tannins contents in Castor plant (Ricinus communis L.) and evaluation of their biological activities. International Journal of Herbal Medicine. (2014) 2 (2): 68-76.
[76]
Z. A. Lone, S. S. Khan, F. Khan. Plant sources for the healing of ophthalmic diseases by the tribals of district raisen (m. p.), India. Indo American Journal of Pharmaceutical Research. (2014) 4 (5): 2374-2378.
[77]
R. S. Chauhan. Studies on Medicinal Plants Used by Tribal Communities in District Singrauli of Madhya Pradesh. International Journal of Scientific and Research Publications. (2017) 7 (1): 17-19.
[78]
A. Singh, S. Mittal, R. Shrivastav, S. Dass, J. N. Srivastava. Biosynthesis of silver nanoparticles using Ricinus communis L. leaf extract and its antibacterial activity. Digest Journal of Nanomaterials and Biostructures. (2012) 7 (3): 1157-1163.
[79]
R. K. Upadhyay, S. S. Ahmad. Ethno-medicinal plants and their Pharmaceutical Potential. Journal of Pharmacy Research. (2012) 5 (4): 2162-2173.
[80]
P. Chauhan, D. Kumar, M. S. Kasana. Medicinal plants of Muzaffarnagar district used in the treatment of urinary tract and kidney stones. Indian Journal of Traditional Knowledge. (2009). 8920; 191-195.
[81]
R. S. H. Al-Kuraishi, L. M. Al-Shamma, H. J. F. Al-Mathkhury. Effect of seed oil Ricinus communis on E. coli isolated from Recurrent Urinary Tract Infections. Iraqi Journal of Science. (2013) 54 (4): 851-855.
[82]
S. Sharma, A. A. Kumar. Pharmacognostical studies on medicinal plants of semi-arid region. Prime Research on Medicine. (2012) 2 (2): 81-88.
[83]
R. K. Maheshwari, R. Shilpkar. Formulation development and evaluation of injection of poorly soluble drug using mixed solvency concept. International Journal of Pharma and Bio Sciences. (2012) 3 (1): 179-189.
[84]
A. K. Gupta, D. K. Mishra, S. C. Mahajan. Preparation and in-vitro evaluation of self-emulsifying drug delivery system of antihypertensive drug valsartan. International Journal of Pharmacy and Life Sciences. (2011). 2 (3): 633-639.
[85]
H. E. El Agamy, G. M. El Maghraby. Natural and synthetic oil phase transition microemulsions for ocular delivery of tropicamide: efficacy and safety. Journal of Applied Pharmaceutical Science. (2015) 5 (2): 067-075.
[86]
M. V. Chaud, P. Tamascia, A. Cristina de Lima, M. O. Paganelli, M. P. D. Gremião, Osvaldo de Freita Solid dispersions with hydrogenated castor oil increase solubility, dissolution rate and intestinal absorption of praziquantel. Brazilian Journal of Pharmaceutical Sciences. (2010) 46 (3): 473-481.
[87]
A. A. Warra. Castor Seed Oil and Its Potential Cosmetic and Pharmaceutical Applications. Achieves of Scientific Research. (2015c) 1 (1): 19-22.
[88]
V. M. Kensa, Y. S. Syhed. Phytochemical screening and antibacterial activity on Ricinus communis L. Plant Sciences Feed. (2011) 1 (9): 167-173.
[89]
M. Sharma, M. I. Mir, M. Y. Malla, A. H. Mir, S. H. Bhat, S. Nazir, J. J. Tripathi. Antimicrobial potential of various extracts of Ricinus communis L. Journal of Natural Products and Plant Resources. (2013) 3 (2): 72-75.
[90]
G. T. A. Jombo, M. N. O. Enenebeaku. Antibacterial profile of fermented seed extracts of Ricinus communis L: Findings from a preliminary analysis. Nigerian Journal of Physiological Sciences. (2008) 23 (1-2): 55-59.
[91]
B. Javaid, N. Rana, Misbah, K. Javed. Antimicrobial studies of Ricinus communis seeds extracts. International Journal of scientific research and management. (2015) 3 (5): 2752-2759.
[92]
H. Rahmati, S. Salehi, A. Malikpour, F. Farhangi. Antimicrobial Activity of Castor Oil Plant (Ricinus communis) Seed Extract against Gram Positive Bacteria, Gram Negative Bacteria and Yeast. International Journal of Molecular Medicine and Advance Sciences. (2015) 11 (1): 9-12.
[93]
N. Rao, S. Mittal, Sudhanshu, E. Menghani. Assessment of Phytochemical Screening, Antioxidant and Antibacterial Potential of the Methanolic Extract of Ricinus communis L. Asian Journal of Pharmacy and Technology. (2013) 3 (1): 20-25.
[94]
M. Sumithra V. N. RaajaAntibacterial Efficacy Analysis of Ricinus communis, Senna auriculata and Euphorbia hirta Extract Treated on the Four Variant of Denim Fabric against Escherichia coli and Staphylococcus aureus. Textile Science and Engineering. (2012) 2 (3): 1-4.
[95]
A. O. Momoh, M. K. Oladunmoye, T. T. Adebolu. Evaluation of the Antimicrobial and Phytochemical Propertiesof Oil from Castor Seeds (Ricinus communis Linn). Bulletin of Environmental Pharmacology and Life Sciences. (2012). 1 [10]: 21-27.
[96]
K. Pooman, S. K. Pratab. Antimicrobial activities of Ricinus communis seeds against some human pathogens. International Research Journal of Pharmacy. (2012) 3 (7): 209-21.
[97]
S. Das, S. Jamal, M. Dutta, S. Rej, S. Chatterjee. Comparative Phytochemical Analysis and Antimicrobial Activity of Four Medicinal Plants. European Journal of Medicinal Plants. (2015). 6 (4): 191-199.
[98]
S. Rampadarath, D. Puchooa, M. Ranghoo- Sanmukhiya. Antimicrobial, Phytochemical and Insecticidal Properties of JatrophaSpecies and Wild Ricinus communis L. Found in Mauritius. International Journal of Pharmacognosy and Phytochemical Research. (2014). 6 (4); 831-840.
[99]
S. A. Alamri, M. F. Moustafa. Antimicrobial properties of 3 medicinal plants from Saudi Arabia against some clinical isolates of bacteria. Saudi Med J. (2012) 33 (3): 272-277.
[100]
V. A. Gargade, D. Kadam. Screening of antibacterial activity of Ricinus communis L. leaves extracts against Xanthomonas axonopodis pv. punicae International Journal of Advanced Research in Biological Sciences. (2015) 2 (9): 47–51.
[101]
P. Jain, P. Sharma. Isolation and screening of endophytic bacteria from Ricinus communis for antimicrobial activity. World Journal of Pharmaceutical Research. (2015) 4 (6): 2012-2017.
[102]
S. K. Verma, S. Yousuf, S. K. Singh, G. B. K. S. Prasad, V. K. Dua. Antimicrobial potential of roots of Ricinus communis against pathogenic microorganisms. International Journal of Pharma and Bio Sciences. (2011) 2 (1): 545-548.
[103]
S. Rajeswari, In-silico Antimicrobial Activity of Bioactive Compounds of Ricinus communis against DNA Gyrase of Staphylococcus aureus as Molecular Target. International Journal of Bioengineering and Life Sciences. (2015). 2 (4): 536.
[104]
J. A. Khan, K. P. Yadav. Assessment of Antifungal Properties ofRicinuscommunis. Journal of Pharmaceutical and Biomedical Sciences. (2011) 11 (11): 1-3.
[105]
L. R. Garcia, G. Lemos de Almeida, F. P. Pires-de-Souza, S. Consani, Antimicrobial activity of a calcium hydroxide and Ricinus communis oil paste against microorganisms commonly found in endodontic infections. Rev. odontociênc. (2009). 24 (4): 406-409.
[106]
A. A. Warra, R. A. Umar, F. A. Atiku, A. Nasiru, M. K. Gafar. Physical and Phytochemical Characteristics of seed Oils from Selected Cultivars Grown in Northern Nigeria. Research and Reviews: Journal of Agriculture and Allied Sciences. (2012) 1 (1): 4-8.
[107]
R. S. Patil, K. K. Bhise. Evaluation of phytochemicals and in vitro antimicrobial activity of aqueous and ethanolic extract from seeds of Ricinus communis Linn. European Journal of Biotechnology and Bioscience. (2015) 3 (3): 19-23.
[108]
N. A. Khan, C. Dubey, A. Srivastava. A TriterpenoidSaponin from the Seeds of Ricinuscommunis. Proceedings of the 14th International Electronic Conference on Synthetic Organic Chemistry. (2010) Pp 1-10.
[109]
R. Khursheed, A. N. Erumnaz, H. Sharif, C. Rizwani. Antibacterial, Antimycelial and Phytochemical Analysis of Ricinus communis Linn, Trigonellafoenumgrecum Linn and Delonixregia (Bojer ex Hook.) Raf of Pakistan. Romanian Biotechnological Letters. (2012) 17 (3): 7237-7244.
[110]
R. Singh, Geetanjali. Phytochemical and Pharmacological Investigations of Ricinus communis Linn, Algerian Journal of Natural Product. 3 (1): 120-129.
[111]
O. Akinyemi, E. W. Iyebor, C. O. Osadebe, N. S. Oniroko. Proximate and Phytochemical Compositions of Ricinuscommunisin Ibadan, South-Western Nigeria. American Journal of Food Science and Nutrition Research. 2016 3 (5): 96-101.
[112]
Rural Advancement Fund International. Biotechnology and Castor oil. Rafi Comminique. (1990) Pp 1-4.
[113]
M. Sujatha. T. P. Reddy, M. J. Mahasi. Role of biotechnological interventions in the improvement of castor (Ricinus communis L.) and Jatropha curcas L. Biotechnology Advances (2008) 26: 424–435.
[114]
H. N. Lakhani, S. Y. Patel, N. P. Bodar, B. A. Golakiya. RAPD analysis of genetic diversity of castor bean (Ricinuscommunis L.). International Journal of. Current. Microbiology and Applied Sciences (2015) 4 (1): 696-703.
[115]
V. Singh, S. Sharma, K. L. Dhar, A. N. Kalia, Activity Guided Isolation of Anti-Inflammatory compound/Fraction from Root of Ricinus communis Linn. International Journal of PharmTech Research. (2013) 5 (3): 1142-1149.
[116]
S. P. Vinay, N. Chandrashekar. Synthesis and Characterization of Silver Nanoparticles using Ricinus communis Plant and Study of their Biological Activity. International Journal of Science, Engineering and Management. (2016) 1 (8): 63-68.
[117]
J. Purohit, G. Chawada, B. Choubisa, M. Patel, B. Dholakiya. Polyester Polyol Derived From Waste Poly (Ethylene Terephthalate) for Coating Application on Mild Steel. Chemical Sciences Journal. (2012) CSJ-76: 1-7.
[118]
S. Austin, B. Foster, M. Conrads. From waste to wall: Sustainable monomer improves performance of emulsion binders. European Coat Ings Journal. (2017) 03: 110-114.
[119]
S. Ismail, A. S. Ahmed, R. Anr, S. Hamdan. Biodiesel Production from Castor Oil by Using Calcium OxideDerived from Mud Clam Shell. Journal of Renewable Energy. (2016) 1-8.
[120]
H. Beneš, J. Slabá, Z. Walterová, D. Rais. Recycling of waste poly (ethylene terephthalate) with castor oil using microwave heating. Polymer Degradation and Stability. (2013) 98 (11): 2232–2243.
[121]
R. F. Tayone, M. S. Silagan, R. M. B. Igdon, E. R. R. Ortiz, K. P. Ong. Microwave assisted depolymerization of post-consumer pet bottles for the production of rigid thermal insulating polyurethane foams. Proceedings of Academics World 28th International Conference. (2016) pp 87-91.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved