Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News Unsubscribe Page
Application of Microsatellite in Fish Biotechnology: Prospects and Drawback - Review
Current Issue
Volume 4, 2019
Issue 3 (June)
Pages: 37-43   |   Vol. 4, No. 3, June 2019   |   Follow on         
Paper in PDF Downloads: 18   Since Jul. 10, 2019 Views: 106   Since Jul. 10, 2019
Authors
[1]
Olagunju Oluwatosin Olubunmi, Department of Fisheries and Aquaculture Technology, Federal University of Technology, Akure, Nigeria.
Abstract
Fisheries and aquaculture has evolved and metamorphosed into so many stages, however, compared with the constant rise in population. hence the quest to meet the ever growing demand of fish in the world gave rise to the advent of the application of biotechnology in fish; molecular markers are identifiable DNA sequence and they have found application in different parts which includes breeding, population genetics, and environmental management. They produce more accurate information, microsatellite markers has become indispensable among other markers because of its unique characteristics such as co-dominance, high polymorphism, short stretches and it is widely distributed in the genome of organisms. Microsatellite has wide variety of application which includes parental and pedigree analysis, population genetics, conservation of stocks, assessment of wild and cultured population, marker assisted selection and breeding, however high cost of developing species specific markers has been one of the major challenges of microsatellite but multiplexing is effective in reducing its cost production. The unique attributes of microsatellite marker has made it an indispensable marker over all other dominant markers.
Keywords
Biotechnology, Fish, Markers, Microsatellites, Polymorphism
Reference
[1]
FAO. The State of World Fisheries and Aquaculture-, contributing to food security and nutrition for all. Fisheries and Aquaculture Department, Food and Agriculture Organization of the United Nations, 2016 Rome pp: 200.
[2]
FAO. The State of World Fisheries and Aquaculture- Meeting the sustainable development goals Rome. 2018Licence: CC BY-NC-SA 3.0 IGO.
[3]
Dauda AB, Folorunso LA, Dasuki A Use of Probiotics for Sustainable Aquaculture Production in Nigeria. Journal of Agriculture and Social Research2013: 13: 35-45. 3.
[4]
Nathan SM and Michael RL (2008) Modern biotechnology connecting innovations in microbiology and biochemistry to engineering fundamentals John Wiley and Sons, Inc.
[5]
FAOFisheries Issues: Impact of aquaculture on biodiversity Text by Devin Bartley, ine]. Heiner Naeve, Rohana Subasinghe. In: FAO Fisheries and Aquaculture Department [onl Rome. Updated 27 May 2005. www.fao.org/fishery/topic/14853/en.
[6]
Nwokwa, M. C The Review of Recent Advances in Fish Genetics and Biotechnology. Continental Journal of Fisheries and Aquatic Science, 2012: 6 (1), 9-18.
[7]
Omole A. I. Biotechnology as an Important Tool for Improving Fish Productivity, American journal of bioscienceand bioengineering 2017: 5 (1): 17-22doi10.1164 8/j.bio.201 70501.14.
[8]
Ayoola, S. O. and Idowu, A. A. Biotechnology and Species Development in Aquaculture. African Journal of Biotechnology, 2008: 7 (25), 4722-4725.
[9]
Deepak J., Ram R. N and Pushpa L Microsatellite markers and their application in fisheries. International Journal of Advances in Agricultural Science and Technology, 2017: 4 (10): 67-104. ISSN: 2348-1358.
[10]
Duran, C., Nikki, A., David, E and Jacqueline B (2009). Molecular Genetic Markers: Discovery, Applications, Data storage and visualization. Current Bionformatics 11: 37 -41.
[11]
O’brien, SJ. Molecular genome mapping lessons and prospects, Current Opinion genetic development (1991) (1): 105-111.
[12]
Mojekwu, T. O, Oguntade, O. R, Oketoki. T. O and Usman A. B Genetic variability of Tilapia in different water bodies using RAPD markers, Proceedings of the 25th Annual Conference of the Biotechnology Society of Nigeria held at National Open University, Abuja. 26th – 31st August, 2012.
[13]
Brown, B., Epifanio, J. Nuclear DNA. In: Hallermann, E. M. Ed., Population Genetics: Principles and Applications for Fisheries Scientists. American Fisheries Society, Bethesda, 2003: 458-472.
[14]
Menezes, M. R., Naik, S., Martins, M., Genetic characterization in four sciaenid species from the Arabian Sea. Journal of Fish Biology, 199343 (1), 61-67.
[15]
Askari, Gh., Shabani, A.,. Genetic diversity evaluation of Paraschisturabampurensis (Nikolskii, 1900) in Shapour and Berim rivers (Iran) using microsatellite markers. Journal of Cell Biology Gen. 2013: 3: 29-34.
[16]
Okumuú I and Çiftci YFish Population Genetics and Molecular Markers: II- Molecular Markers and Their Applications in Fisheries and Aquaculture, Turkish Journal of Fisheries and Aquatic Sciences 2003: (3): 51-79.
[17]
Campbell, D., Duchesne, P. and Bernatchez, L.. AFLP utility for population assignment studies: analytical investigation and empirical comparison with microsatellites. Molecular Ecology 2003 (12): 1979–1991.
[18]
Edun, O. M. and Uka,, Biotechnology in Aquaculture: Prospects and Challenges, Nigerian Journal of Biotechnology2011 (22): 8-12 ISSN: 0189 17131, www.biotechsoc ietynigeria.org.
[19]
Tautz, DHypervariability of simple sequence as a general source for polymorphic DNA marker, Nucleic Acid Research 1989: 17 (16), 6463–6471.
[20]
Edwards, A., Civitello, A., Hammond, H. A. and Caskey, C. TDNA typing and genetic mapping with trimeric and tetrameric tandem repeats. The American Journal of Human Genetics, 1991: 49 (4): 746–756.
[21]
Beckmann J. S. and Weber J. L. Survey of human and rat microsatellite. genomics1992: (12): 627-631.
[22]
Mojekwu, T. O and Anumudu, C. IMicrosatellite markers in Aquaculture: Application in Fish population genetics IOSR Journal Of Environmental Science, Toxicology And Food Technology (IOSR-JESTFT) e-ISSN: 2319-2402, p- ISSN: 2319-2399. 5 (4) (Jul. - Aug. 2013), PP 43-48 www.Iosrjournals.Org.
[23]
Pérez-Jiménez M, Besnard G, Dorado G and Hernandez P varietal tracing of virgin olive oils based on plastid DNA variation profiling. PLoS One2013 8: e70507.
[24]
Phumichai C, Phumichai T and Wongkaew A Novel chloroplast microsatellite (cpSSR) markers for genetic diversity assessment of cultivated and wild Hevea rubber. Plant Molecular Biology Report 2015 (33): 1486-1498.
[25]
Danish, M., Chauhan, R. S., Kanyal, P., Khati, A. and Chauhan, S. A review on molecular markers and their application in fisheries and aquaculture, National Journal of Life Science, 2015: 12 (1): 47-55.
[26]
Christiakov D. A., Bart H., Filip A. M. V., Microsatellite and their genome distribution, evolution, function and applications; a review with special reference to fish genetics. Aquaculture 2006: (255): 1-29www.elsevier.com/locate/aqua-online.
[27]
. Selkoe, K. A. and Toonen, R. J. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecology Letter 2006: 9 (5): 615–629.
[28]
Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S and McCouch S Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): Frequency, length variation, transposon associations, and genetic marker potential. Genome Response 2001 (11): 1441-1452.
[29]
Fjalestad, K. T., Moen, T. and Gomez-Raya, L, Prospects for genetic technology in salmon breeding programs. Aquaculture Research, 2003: (34): 397-406.
[30]
Subasinghe, R. P., Curry, D., McGladdery, S. E. and Bartley, D. Recent Technological Innovations in Aquaculture. In: Review of the State of World Aquaculture. 2003FAO Fisheries Circular No. 886, Rev. 2, Rome: 59-74.
[31]
Chistiakov, D. A., Hellemans, B., Haley, C. S., Law, A. S., Tsigenopoulos, C. S., Kotoulas, G., Bertotto, D., Libertini, A., and Volckaert, F. AA microsatellite linkage map of the European sea bass Dicentrarchuslabrax. Life Genetics, 2005: (170): 1821–1826.
[32]
Barbará T, Palma‐Silv C, Paggi G, Bered F, Fay Mand Lexer C. Cross‐species transfer of nuclear microsatellite markers: potential and limitations. Journal of Molecular Ecology2007: (16): 3759-3767.
[33]
Tang J, Baldwin S, Jacobs J, Van D, Linden C, Voorrips R, Leunissen J, VaneckH and VosmanB. Large-scale identification of polymorphic microsatellites using an in silico approach. BMC Bioinformatics 2008: (9): 374.
[34]
Chen M, Tan Z, Zeng G and Peng J Comprehensive analysis of simple sequence repeats in pre-miRNAs. Molecular Biology and Evolution2010: 27 (10): 2227–2232.
[35]
Qi WH, Jiang XM and Du LM, Genome-wide survey and analysis of microsatellite sequences in bovid species. Munderloh UG, ed. PLoS ONE. 2015 10 (7): e0133667. doi: 10.1371/journal. pone.0133667.
[36]
Alam CM, IqbalA, Thadari B and Ali S. Imex based analysis of repeat sequences in flavivirus genomes, including dengue virus. Journal of Data Mining Genomics Proteomics 2016: (7): 187.
[37]
Swain S, Das SP, Bej D, Patel A, Jayasankar P and Chaudhary B Evaluation of genetic variation in Labeofimbriatus (Bloch, 1795) populations using heterologous primers. Indian Journal of Fisheries 2013: 60 (1): 29-35.
[38]
Lal KK, Chauhan T, Mandal A, Singh RK, Khulbe L, Ponniah AG and Mohindra V. Identification of microsatellite DNA markers for population structure analysis of Indian major carp, Cirrhinusmrigala (Hamilton Buchanan, 1822). Journal of applied Ichthyology2004): (20): 87-91.
[39]
Biet E, Sun J, Dutriex M., conserved species preference in DNA binding among recombinant protein abnormal effect of ssDNA secondary structure. Nucleic acids Res 1999: (27): 596-600.
[40]
Boris B., Xenia C. O., Marcel S. VGenetic diversity of six populations of red hybrid tilapia, using Microsatellite genetic Markers. Revised, MVZ Cordoba, 2011: 16 (2): 2491-2498.
[41]
Al-Atiyat, R. M., Tabbaa, M. J., Salameh, N. M., Tarawneh, K. A., Al-shamyla L. and Al- Tamimie, H. J.. Analysis of genetic fat tailed sheep in southern region of Jordan. Asian Journal of Animal and Veterinary science 2012: (7): 376 -389.
[42]
Liu Z. J and Cordes JF DNA marker technologies and their application in aquaculture genetics. Aquaculture 2004: (238): 1-37.
[43]
Burger J, Hummel, S, Hermann B, Henke W, DNA preservation; a microsatellite DNA study on ancient skeletal remains. Electrophoresis 1999: 20, 1722-1728.
[44]
Castro, J., Pino, A., Hermida, M., Bouza, C., Riaza, A., Ferreiro, I., Sánchez, L., Martínez, P.. A microsatellite marker tool for parentage assessment in Senegal sole (Soleasenegalensis): genotyping errors, null alleles and conformance to theoretical assumptions. Aquaculture 2006: (261) 1194–1203.
[45]
Guinand B., Scribner. K. T. Page KS and Burnaham Curtis, M. K. genetic variation over space and time: analysis of extinct and remnant lake trout population in the upper great lakes. B Biological Science 2003: (270): 425-433.
[46]
Norris, A. T., Bradley, O. G. and Cunningham, E. P. Microsatellite genetic variation between and within farmed and wild Atlantic salmon (Salmosalar) using microsatellite markers Aquaculture 1999: 182: 7383.
[47]
Morelli KA, Revaldaves E, Oliveira C and Foresti F Isolation and characterization of eight microsatellite loci in Leporinusmacrocephalus (Characiformes: Anostomidae) and cross-species amplification Molecular Ecology Notes 2007 (7): 32-34.
[48]
Zhan, A., Wang, Y., Brown, B. and Wang, H. P Isolation and characterization of novel microsatellite markers, for yellow perch (Percaflavescens), International Journal of Molecular Science 2009:(10): 18 -27.
[49]
Olivatti A. M, T. A. Boni, N. J. Silva-Júnior, L. V. Resende, F. O. Gouveia and M. P. C. Telles Heterologous amplification and characterization of microsatellite markers in the Neotropical fish (Leporinusfriderici) Genetic Molecular Response2011: 10 (3): 1403-1408.
[50]
De-Silva MPKSK Genetic diversity of genetically improved farmed tilapia (GIFT) broodstocks in Sri Lanka. International Journal of Scientific Research and Innovative Technology; 2015: 2 (3): 66-76.
[51]
Ikpeme EV, Udensi OU, Ekaluo UB, Koofreh ME, Okolo CM, Ekpo PB and nOgbonna NC Unveiling the genetic diversity in Clariasgarcepions (Burchell, 1822) using Random Amplified Polymorphic DNA (RAPD) Fingerprinting Techniques. Asian Journal of Animal Science; 2015: 9 (5): 187-197.
[52]
Etukudo Ekerette EE and Umoyen AJ Relationships among phenotype traits of giant African land snails in Western region of Nigeria. Journal of Advances in Biology and Biotechnology; 2018: 16 (4): 1–8. 17.
[53]
Brown JR, Bechenbach AT, Smith MJ Intraspecific DNA sequence variation of the mitochondrial control region of white sturgeon (Acipensertransmontanus) Molecular Biology and Evolution. 1993; 10 (2): 326-341.
[54]
Meyer A (1993) Evolution of mitochondrial DNA in fishes. In: Mochachka PW, Mommsen TP. Eds., Biochemistry and molecular biology of fishes. Elsevier Press, New York.
[55]
Abdul Rehman MM. (2014) Revolution Biotechnology in Finishing Sector Of Textile; Available: textilelearner.blogspot.com/2013/ 04.
[56]
Ekerette EE, Ikpeme EV, Udensi OU, Ozoje MO, Etukudo OM, Umoyen AJ, Durosaro SO and Wheto M, Phylogenetics and molecular divergence of tilapia fish [Oreochromis species] using mitochondrial D-loop and cytochrome b regions, American Journal of Molecular Biology 2018: 8 (1): 39-57.
[57]
Allendorf Fand Ryman F Genetic Management of hatchery stocks. In: Population Genetic and Fishery Management (eds. Ryman N, Utter F). University of Washington Press, Seattle 1987; 141-143.
[58]
Pérez LA, Winkler FM, Díaz NF, Cárcamo C, Silva N Genetic variability in four hatchery strains of coho salmon, Oncorhynchuskisutch (Walbaum), in Chile. Aquaculture Research 2001 (32): 41-46.
[59]
Ahmad J. N., Azizah, M. N., Adikwu, I. A., Istifanus, W. A., Abalis, G. E and Muchlisin, Z. A Diversity and distribution of fishes of Gaji River, Bauchi state Nigeria. Advances in Environmental sciences-International journal of the bioflux society2012: 4 (2): 50 -54.
[60]
Sekino, M., Hara, M. and Taniguchi, N Genetic Diversity Within and Between Hatchery Strains of Japanese Flounder Paralichthysolivaceus Assessed by means of Microsatellite and mitochondrial DNA sequencing analysis. Aquaculture, 2002: (213): 101-122.
[61]
Alam S and Islam S Population genetic structure of Catlacatla (Hamilton) revealed by microsatellite DNA markers. Aquaculture 2005: (246): 151-160.
[62]
Aida, T. On the inheritance of color in a freshwater fish, Aplocheiluslatipes, Temmick and Schlegel. Genetics 1921: 6, 554–573.
[63]
Kocher, T. D., Albertson, R. C., Carleton, K. L. and Streelman, J. T. the genetic basis of biodiversity: genomic studies of cichlid fishes. In: Shimizu, N., Aoki, T., Hirono, I. and Takashima, F. (eds) Aquatic Genomics: Steps Toward a Great Future. Springer-Verlag, New York, pp. 2002: 35–44.
[64]
Perry, G. M. L., Danzmann, R. G., Ferguson, M. M. and Gibson, J. PQuantitative trait loci for upper thermal tolerance in out bred strains of rainbow trout (Oncorhynchusmykiss). Heredity 2001: (86): 333–341.
[65]
Waldbieser, G. C., Bosworth, B. G., Nonneman, D. J. and Wolters, W. R. a microsatellite-based genetic linkage map for channel catfish, Ictaluruspunctatus. Genetics 2001: (158): 727–734.
[66]
Ozaki, A., Sakamoto, T., Khoo, S., Nakamura, K., Coimbra, M. R., Akutsu, T. and Okamoto, N. (Quantitative trait loci (QTLs) associated with resistance/susceptibility to infectious pancreatic necrosis virus (IPNV) in rainbow trout (Oncorhynchusmykiss). Molecular Genetics and Genomics2001: (265) 23–31.
[67]
Tanck, M. W. T., Palstra, A. P., Van De Weerd, M., Leffering, C. P., Van Der Poel, J. J., Bovenhuis, H. and Komen, J. Segregation of microsatellite alleles and residual heterozygosity at single loci in homozygous androgenetic common carp (Cyprinuscarpio L.). Genome 2001: (44): 743–751.
[68]
Wan, QH., Wu, H, Fujihara T., Fang, S. G., Which genetic marker for which conservation genetics issue/ Electrophoresis 2004: 25, 2165-2176.
[69]
Ellegren, H. (Microsatellites: simple sequences with complex evolution. Nat. Rev. Genet. 2004: (5) 435–445.
[70]
Hanser L., Adecock GJ, Smith PJ, Ramirez J. H. B., Carvalho G. R, 2002. Loss of microsatellite diversity and low effective population size inan over exploited population of New Zealand snapper (Pagrusauratus). Proc. Natl. cad. Sci. U.S.A. 99, 11742-11747.
[71]
Zeng Q., Sun C., Dong J., TianY and Ye X (2017) Comparison of the Crossbreeding Effects of Three Mandarin Fish Populations and Analyses of the Microsatellite Loci Associated with the Growth Traits of F1 Progenies. International Journal of Aquaculture and Fishery Sciences ISSN: 2455-8400.
[72]
Waldbieser G. C and Wolters, WR, application of polymorphic microsatellite loci in a channel catfish,(Ictaruspunctatus) breeding program. Journal of World Aquaculture Society. 1999: (30): 256-262.
[73]
Pam Joshua Gyang, Evans N. Nyaboga and Edward K. Muge Molecular Characterization of Common Bean (Phaseolus vulgaris L.) Genotypes Using Microsatellite Markers Journal of Advances in Biology & Biotechnology2017: 13 (2): 1-15, Article no. JABB. 33519 ISSN: 2394-1081.
[74]
Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses, Heredity. (99): 125-132.
[75]
Schlotterer, C. (2000). Evolutionary dynamics of microsatellite DNA, Chromosoma, (109), 365–371.
[76]
Renshaw AM, Saillant E Bradfield C, and Gold R. J (2006) microsatellite multiplex panel for genetic studies off three marine fishes red drum (Sciiaenopsocellatus), red snapper (Lutjanuscamcechanus), And cobia (Rachycentroncanadum) Aquaculture 253: 731-735.
[77]
Norris, A. T., Bradley, D. G. and Cunningham, E. P (2000) Parentage and relatedness determination in farmed Atlantic salmon (Salmosalar), using microsatellite markers. Molecular Ecology (11): 155–165.
[78]
Agbebi, O. T., Ilaboya, D. E. and Adebambo, A. O., 2013. Preliminary characterization of genetic strains in clariid species, Clarias gariepinus and Heterobranchus bidorsalis using microsatellite markers. African Journal of Biotechnology 12 (4), 364-369.
[79]
Curtu,. L., Finkeldey, R and Gailing, O. (2004). Comparative sequencing of a microsatellite locus reveals size homoplasy within and between European oak species (Quercus spp.). Plant Molecular Biology Response (22) 339–346.
[80]
Telles MP, Resende LV, Brondani RP, Collevatti RG (2010) Isolation and characterization of microsatellite markers in the armored catfish Hypostomusgymnorhynchus (Loricariidae). Genetic Molecular Research (9): 1770-1774.
[81]
O″Reilly, P. and Wright, J. M (1995) the evolving technology of DNA fingerprinting and its application to fisheries and aquaculture, Journal of Fish Biology, (47): 29-55.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved