Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Preparation, Characterization and Catalytic Activity Study of Anderson-Type Heteropolymolybdates Supported on Different Zeolite Structures
Current Issue
Volume 5, 2018
Issue 3 (June)
Pages: 34-41   |   Vol. 5, No. 3, June 2018   |   Follow on         
Paper in PDF Downloads: 16   Since Jul. 24, 2018 Views: 1013   Since Jul. 24, 2018
Mohamad Sayed Thabet, Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt; Department of Chemistry, Faculty of Science, Jazan University, Jazan, KSA.
Polyoxometalate catalysts with different divalent ions (Mn+ = Ni2+, Zn2+) were prepared by incipient witness impregnation method and supported on different zeolites namely, NaY, ZSM-5 and Mordenite. The catalyst samples were characterized using different tools such as XRD, FTIR, and BET texture. The crystalline structure of zeolite accompanied by an increase in particle size can be established using XRD data. These new phases caused pore widening of the employed zeolites, a decrease of surface area and other changes of the surface texture. The interaction of polyoxomolybdate with the zeolite structure confirmed by physical changes. The surface area was minimal in the catalysts supported on NaY zeolite. The assessment of the catalytic activity was performed by the use of the photocatalytic degradation of direct blue 1 dye (DB 1) as a probe reaction in presence of H2O2 as an oxidant. It has been found that the catalytic activity of Mn+Mo-ZSM5 is higher than that of Mn+Mo-Y or Mn+Mo-Mordenite.
Anderson – Heteropolymolybdate, Supported Zeolites, Photocatalytic Degradation
F. Boussema, A. Gross, F. Hmida, B. Ayed. H. Majdoub, S. Cosnier, A. Maaref, M, Holzinger Biosensors and Bioelectronics. 109 (2018) 20-26.7605–7622.
L. Zhou, L. Wang, Y. liCao, Y. Diao, R. Yan, S. Zhang, Molecular Catalysis. 438 (2017) 47-54.
Y.-F. Song, R. Tsunashima, Chem. Soc. Rev. 41 (2012) 7384–7402.
L. Zhou, L. Wang, Y. Diao, R. Yan, S. Zhang, Molecular Catalysis, 433 (2017) 153-161.
P. Yin, G. Li, T. Liu, Chem. Soc. Rev. 41 (2012) 7368–7383.
L. C. W. Baker, D. C. Glick, Chem. Rev. 98 (1998) 3–50.
P. Gouzerh, M. Che, Lactualitè Chim. 298 (2006) 9–22.
M. T. Pope, J. J. In Borrás-Almenar, E. Coronado, A. Müller, M. T. Pope, Poly-oxometalate Molecular Science, Kluwer Academic Publishers, Netherlands, 2003.
H. Lü, P. Li, Y. Liu, L. Hao, W. Ren, W. Zhu, C. D-, Feng Yang. Chemical Engineering Journal 313 (2017) 1004–1009.
P. Putaj, F. Lefebvre, Coord. Chem. Rev. 255 (2011) 1642–1685.
T. Akutagawa, D. Endo, S. Noro, L. Cronin, T. Nakamura, Coord. Chem. Rev. 251 (2007) 2547–2561.
H. An, X. Jia, H. F. Walker. Journal of Computational Physics. 347 (2017) 1-19.
S. Omwoma, W. Chen, R. Tsunashima, Y.-F. Song, Coord. Chem. Rev. 258–259 (2014) 58–71.
Xi-Ya. Yang, H-F. Zhang, S-X. Li, J-Q. Sha, X. Li, F. Ma. Polyhedron 144 (2018) 240-248.
S. Omwoma, C. T. Gore., Y. Ji, C. Hu, Yu-Fei Song Coordination Chemistry Reviews 286 (2015) 17–29.
S.-S. Wang, G.-Y. Yang, Chem. Rev. 115 (2015) 4893.
C. Diaz-Uribe, A. Rodríguez, D. Utria, W. Vallejo, E. Puello, X. Zarate, E. Schott, Polyhedron. 149, (2018) 163-170.
S. Anandan, S. Y. Ryu, W. J. Cho, M. Yoon, Journal of Molecular Catalysis A: Chemical 195 (2003) 201.
M. I. Ahmad, S. M. J. Zaidi, S. U. Rahman, S. Ahmed, Microporous and Mesoporous Materials 91 (2006) 296.
S. R. Mukai, L. Lin, T. Masuda, K. Hashimoto, Chemical Engineering Science 56 (2001) 799.
K. Pamin, A. Kubacka, Z. Olejniczak, J. Haber, B. Sulikowski, Applied Catalysis A 194 (2000) 137.
E. F. Freitas, M. F. Paiva, S. C. L. Dias, J. A. Dias, Catalysis Today, 289 (2017) 70-77.
R. Chatti Solar Energy Materials & Solar Cells 91 (2007) 180–190.
A. LaGinestra, F. Giannetta and P. Fiorucci, Gazz. Chim. Ital. (1968), 98, 1197.
A. W. Burton, K. Ong, T. Rea, and I. Y. Chan, Microporous Mesoporous Mater., vol. 117, no. 1, (2009) pp. 75–90.
P. Klug, L. E. Alexander Wiley, (1954), New York.
D. R. Lide, “DR 2003–2004 CRC Handbook of Chemistry and Physics,” Boca Raton FL Itd CRC Press.
S. Brunauer, Oxford university Press, (1944), Oxford.
A. Ahmed, S. A. El-Hakam and S. Samra, Ind. J. of Chem. 29 (1990). 470.
J. Scherzer, J. L. Bass, J. Catal. 28 (1973) 101.
R. Cid, F. J. Gil Llambfas, J. L. G. Fierro, A. Lopez Agudo, J. Villasenor, J. Catal. 89 (1984) 478.
K-H. Lee, B.-H. Hal, Micro and Meso. Materials 23 (1998) 211-219.
N. T. Mcdevitt, W. L. Baun, Spectrochimica Acta, 20 (1964) 79].
E. M. Flanigen, H. Khatami, H. A. Szymanski, in: E. M. Flanigen, L. B. Sand (Eds.), Molecular Sieve Zeolites. I, Adv. Chem. Ser. No. 101, American Chemical Society, Washington, DC, (1971), p. 201.
D. Yin, D, Yin, Micro and Meso. Materials 24 (1998) 123-126.
T. M. Salama, I. Othman, M. S. Sirag, G. A. El-Shobaky, Microporous and Mesoporous Materials 95, (2006) 312–320.
KENJI N., T. TAK, T AKAHIRO S. and M. MIWA Polyhedron Vol. 6, No. 2, (1987) pp. 213-218.
A. Proust, B. Matt, R. Villanneau, G. Guillemot, P. Gouzerh, and G. Izzet, Chem. Soc. Rev., vol. 41, no. 22, (2012) pp. 7605–7622.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
Copyright © 2013-, Open Science Publishers - All Rights Reserved