Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Review of the Characterization of Sodium Alginate by Intrinsic Viscosity Measurements. Comparative Analysis between Conventional and Single Point Methods
Current Issue
Volume 1, 2014
Issue 1 (May)
Pages: 1-11   |   Vol. 1, No. 1, May 2014   |   Follow on         
Paper in PDF Downloads: 119   Since Aug. 28, 2015 Views: 3069   Since Aug. 28, 2015
Authors
[1]
Martin Alberto Masuelli , Instituto de Física Aplicada-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 917 (ZC: 5700), San Luis, Argentina.
[2]
Cristian Omar Illanes , Instituto de Física Aplicada-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 917 (ZC: 5700), San Luis, Argentina.
Abstract
In the pharmaceutical and food industry, alginate is used in aqueous solutions and excipients as thickener, gelling agent, coagulant and encapsulant. This biopolymer is very important, with many key industrial applications, especially if the intrinsic viscosity [η] and the viscometric molecular weight (Mv) are known. Alginate is obtained from the cell walls of algae such as Macrocystis pyrifera, Laminaria hyperborea, Laminaria digitata, Laminaria japonica, Sargassum vulgare, etc.; bacteria such as Pseudomonas aeruginosa and Azotobacter vinelandii can also synthesize it. This work studied alginate in aqueous solution from 0.25 to 1% wt., measuring its intrinsic viscosity in order to obtain its Mv. The intrinsic viscosity is calculated by the classical methods of Huggins, Kremer, Schulz-Blashke and Martin. We compared several single point methods to determine which of them would be more appropriate for an alginate-water system. We also obtained Mark-Houwink parameters and the corresponding viscometric molecular weight.
Keywords
Alginate, Intrinsic Viscosity, Single Point, Hydrodynamic
Reference
[1]
Milani, Jafar; Maleki, Gisoo. Hydrocolloids in Food Industry. Chapter 2 of book "Food Industrial Processes - Methods and Equipment" edited by Benjamin Valdez, ISBN 978-953-307-905-9, InTech, February 2, 2012.
[2]
Rioux, L.-E. ; Turgeon, S.L.; Beaulieu, M. Characterization of polysaccharides extracted from brown seaweeds. Carbohydrate Polymers 69 (2007) 530-537.
[3]
Kong, Hyun Joon; Kaigler, Darnell; Kim, Kibum; Mooney; David J. Controlling Rigidity and Degradation of Alginate Hydrogels via Molecular Weight Distribution. Biomacromolecules 2004, 5, 1720-1727.
[4]
Shevchenko, N. M.; Burtseva, Yu V.; Zvyagintseva, T. N.; Makareva, T. N.; Sergeeva, O. S.; Zakharenko, A. M.; Isakov, V. V.; Linh, Nguyen Thi; Hoa, Nguyen Xuan; Ly, Bui Minh; Huyen, Pham Van. Polysaccharides and sterols from green algae Caulerpa lentillifera and C. sertularioides. Chemistry of Natural Compounds, 45, 1, (2009) 1-5.
[5]
Larsen, Bjorn; Salem, Dalia, M.S.A.; Sallam, Mohammed A.E.; Mishrikey, Morcos M., Beltagy, Ali I. Characterization of the alginates from algae harvested at the Egyptian Red Sea coast. Carbohydrate Research 338 (2003) 2325-2336.
[6]
Vauchel, P.; Leroux, K.; Kaas, R.; Arhaliass, A.; Baron, R.; Legrand, J. Kinetics modeling of alginate alkaline extraction from Laminaria digitata. Bioresource Technology 100 (2009) 1291-1296.
[7]
Jang, L. K.; Nguyen, D.: Geesey, G. G. Effect of pH on the absorption of Cu(II) by alginate gel. Water Research Vol. 29, 1, (1995) 315-321.
[8]
Chan, L.W.; Jin, Y.; Heng, P.W.S. Cross-linking mechanisms of calcium and zinc in production of alginate microspheres. International Journal of Pharmaceutics 242 (2002) 255-258.
[9]
Davis, Thomas A.; Volesky, Bohumil; Mucci, Alfonso. A review of the biochemistry of heavy metal biosorption by brown algae. Water Research 37 (2003) 4311-4330.
[10]
Al-Rub, F.A. Abu; El-Naas, M.H.; Benyahia, F.; Ashour, I. Biosorption of nickel on blank alginate beads, free and immobilized algal cells. Process Biochemistry 39 (2004) 1767-1773.
[11]
Pathak, Tara Sankar; Yun, Jung-Ho; Lee, Se-Jong; Baek, Dae-Jin; Paeng, Ki-Jung. Effect of cross-linker and cross-linker concentration on porosity, surface morphology and thermal behavior of metal alginates prepared from algae (Undaria pinnati?da). Carbohydrate Polymers 78 (2009) 717-724.
[12]
Lee, Jin W.; Ashby, Richard D.; Day, Donal F. Role of acetylation on metal induced of alginates precipitation. Carbohydrare Polymers 29 (1996) 337-345.
[13]
Chan, L.W.; Lee, H.Y.; Heng, P.W.S. Production of alginate microspheres by internal gelation using an emulsi?cation method. International Journal of Pharmaceutics 242 (2002) 259-262.
[14]
Chan, Ariel W.; Neufeld, Ronald J. Modeling the controllable pH-responsive swelling and pore size of networked alginate based biomaterials. Biomaterials 30 (2009) 6119-6129.
[15]
Mancini, Marco; Moresi, Mauro; Rancini, Roberto. Mechanical properties of alginate gels: empirical characterization. Journal of Food Engineering 39 (1999) 369-378.
[16]
Yang, Ji-Sheng; Xie, Ying-Jian; He, Wen. Research progress on chemical modi?cation of alginate: A review. Carbohydrate Polymers 84 (2011) 33-39.
[17]
Bouhadir, Kamal H.; Lee, Kuen Yong; Alsberg, Eben; Damm, Kelly L.; Anderson, Kenneth W.; Mooney, David J. Degradation of Partially Oxidized Alginate and Its Potential Application for Tissue Engineering. Biotechnol. Prog. 17 (2001) 945-950.
[18]
Zhong, Dan, Huang, Xin; Yang, Hu; Cheng, Rongshi. New insights into viscosity abnormality of sodium alginate aqueous solution. Carbohydrate Polymers 81 (2010) 948-952.
[19]
Donnan, F. G. & Rose, R. C. Osmotic pressure, molecular weight, and viscosity of sodium alginate. Can. J. Res., 28 (B) (1950) 105-13.
[20]
Harkness, M., Wassermann, A. The intrinsic viscosity of sodium alginate. Journal of Chemical Society (1952) 497-499.
[21]
Vincent, D. L.; Goring, D. A. I.; Gordon, E. A comparison of the properties of various preparations of sodium alginate. Journal of Applied Chemistry 5, 8 (1955) 374-378.
[22]
Cook, W. H. & Smith, David B. Molecular weight and hydrodynamic properties of sodium alginate. Canadian Journal of Biochemistry and Physiology 32(3) (1954) 227-239.
[23]
Haug, A. & Smidsrod, O. Determination of intrinsic viscosity of alginates. Acta Chemica Scandinavica 16 (1962) 1569-1578.
[24]
Smidsrod, O & Haug, A. Acta Chemica Scandinavica 22 (1968) 797-810.
[25]
Smidsrød, Olav. Solution properties of alginate. Cabohydrate Research 13 (1970) 359-372.
[26]
Mackie, W.; Noy, R.; Sellen, D.B. Solution properties of sodium alginate. Biopolymers19 (1980) 1839-1860.
[27]
Launey, B.; Doublier, J. L.; Cuvelier, G. Flow properties of aqueous solutions and dispersions of polysaccharides. In Functional Properties of Food Macromolecules, eds J. R. Mitchell, D. A. Ledward. Elsevier, London, (1986) pp. l-78.
[28]
Martinsen, Anita; Skjak-Braek, Gudmund; Smidsrod, Olav; Zanetti, Flavio. Comparison of Different Methods for Determination of Molecular Weight and Molecular Weight Distribution of Alginates. Carbohydrate Polymers 15 (1991) 171-193.
[29]
Moe, S. T., Draget, K. I., Skjak-Braek, G.; Smidsrod, 0. Alginates. In Food Polysaccharides and Their Applications, ed. A.M. Stephen, Marcel Dekker, New York, (1995) pp. 245-286.
[30]
Velings, Nicolas M. & Mestdagh, Michkle M. Physico-Chemical Properties of Alginate Gel Beads. Polymer Gels and Networks 3(1995)31 l-330.
[31]
Mancini, Marco; Moresi, Mauro; Sappino, Fabiana. Rheological Behaviour of Aqueous Dispersions of Algal Sodium Alginates. Journal of Food Engineering 28 (1996) 283-295.
[32]
Fourest, E.; Volesky, B. Alginate Properties and Heavy Metal Biosorption by Marine Algae. Appl. Biochem. Biotechnol. 1997, 67, 33-44.
[33]
Clementi, Francesca; Mancini, Marco; Moresi, Mauro. Rheology of Alginate from Azotobacter vinelandii in Aqueous Dispersions. Journal of Food Engineering 36 (1998) 51-62.
[34]
Ouwerx, C.; Velings, N.; Mestdagh, M.M.; Axelos, M.A.V. Physico-chemical properties and rheology of alginate gel beads formed with various divalent cations. Polymer Gels and Networks 6 (1998) 393-408.
[35]
Pelletier, S. ; Hubert, P. ; Lapicque, F. ; Payan, E.; Dellacherie, E. Amphiphilic derivatives of sodium alginate and hyaluronate: synthesis and physico-chemical properties of aqueous dilute solutions. Carbohydrate Polymers 43 (2000) 343-349.
[36]
Stokke, Bjørn T.; Draget, Kurt; Smidsrød, Olav; Yuguchi, Yoshiaki; Urakawa, Hiroshi; Kajiwara, Kanji. Small-Angle X-ray Scattering and Rheological Characterization of Alginate Gels. 1. Ca-Alginate Gels. Macromolecules 2000, 33, 1853-1863.
[37]
Gomez-Diaz, Diego & Navaza, Jose M. Rheology of aqueous solutions of food additives Effect of concentration, temperature and blending. Journal of Food Engineering 56 (2003) 387-392.
[38]
Draget, Kurt Ingar; Stokke, Bjørn T.; Yuguchi, Yoshiaki; Urakawa, Hiroshi; Kajiwara, Kanji. Small-Angle X-ray Scattering and Rheological Characterization of Alginate Gels. 3. Alginic Acid Gels. Biomacromolecules 2003, 4, 1661-1668.
[39]
Larsen, B.; Salem, D. M. S. A.; Sallan, M. A. E.; Mishrikey, M. M.; Beltagy, A. I. Characterization of the alginates from algae harvested at the Egyptian Red Sea coast. Carbohydrate Res. 2003, 338, 2325-2336.
[40]
Larsen, Christian Klein; Gaserød, Olav; Smidsrød, Olav. A novel method for measuring hydration and dissolution kinetics of alginate powders. Carbohydrate Polymers 51 (2003) 125-134.
[41]
Vold, I. M. N., Kristiansen, K. A., Christensen, B. E. A study of the chain stiffness and extension of alginates, in vitro epimerized alginates, and periodate-oxidized alginates using size-exclusion chromatography combined with light scattering and viscosity detectors. Biomacromolecules 7 (2006) 2136-2146.
[42]
Vold, I. M. N., Kristiansen, K. A. & Christensen, B. E.. A study of the chain stiffness and extension of alginates, in vitro epimerized alginates, and periodate-oxidized alginates using size-exclusion chromatography combined with light scattering and viscosity detectors. Biomacromolecules 8 (2007) 2627-2627. (Addition/correction).
[43]
Gomez, C.G.; Rinaudo, M.; Villar, M.A. Oxidation of sodium alginate and characterization of the oxidized derivatives. Carbohydrate Polymers 67 (2007) 296-304.
[44]
Torres, Marcia R.; Sousa, Alessandra P. A.; Silva Filho, Eduardo A. T.; Melo, Dirce F.; Feitosa, Judith P. A.; de Paula, Regina C. M.; Lima, Maria G. S. Extraction and physicochemical characterization of Sargassum vulgare alginate from Brazil. Carbohydrate Research 342 (2007) 2067-2074.
[45]
Kakita, H. & Kamishima, H. Some properties of alginate gels derived from algal sodium alginate. J. Appl. Phycol. (2008) 20:543-549.
[46]
Holme, Hilde K.; Davidsen, Lene; Kristiansen, Are; Smidsrød, Olav. Kinetics and mechanisms of depolymerization of alginate and chitosan in aqueous solution. Carbohydrate Polymers 73 (2008) 656-664.
[47]
Mørch, Y. A.; Holtan, S.; Donati, I.; Strand, B. L.; Skjåk-Bræk, G. Mechanical Properties of C-5 Epimerized Alginates. Biomacromolecules 2008, 9, 2360-2368.
[48]
Yang, Jisheng; Chen, Shengbi; Fang, Yun. Viscosity study of interactions between sodium alginate and CTAB in dilute solutions at different pH values. Carbohydrate Polymers 75 (2009) 333-337.
[49]
Minami, Hideki; Katakawa, Junichi; Sano, Yoh. Differences in Excluded Volume, Diffusion Coefficient, and Surface Charge of Alginates with Different Mannuronate to Guluronate Ratio. J. Biol. Macromol., 10 (1), 3-11 (2010).
[50]
Davidovich-Pinhas, Maya; Bianco-Peled, Havazelet. A quantitative analysis of alginate swelling. Carbohydrate Polymers 79 (2010) 1020-1027.
[51]
Fu, Shao; Thacker, Ankur; Sperger, Diana M.; Boni, Riccardo L.; Velankar, Sachin; Munson, Eric J.; Block, Lawrence H. Rheological Evaluation of Inter-grade and Inter-batch Variability of Sodium Alginate. AAPS PharmSciTech, Vol. 11, No. 4, December 2010 1662-1674.
[52]
Fu, Shao; Thacker, Ankur; Sperger, Diana M.; Boni, Riccardo L.; Buckner, Ira S.; Velankar, Sachin; Munson, Eric J.; Block, Lawrence H. Relevance of Rheological Properties of Sodium Alginate in Solution to Calcium Alginate Gel Properties. AAPS Pharm. Sci. Tech., 12, 2, June 2011 453-460.
[53]
Andersen, T.; Strand, Bent L.; Formo, Kjetil; Alsberg, Eben; Christensen, Bjørn E. Alginates as biomaterials in tissue engineering. Carbohydr. Chem., 2012, 37, 227-258.
[54]
Díaz Baños, F. Guillermo; Díez Peña, Ana I.; Hernánez Cifre, J. Ginés; López Martínez, M. Carmen; Ortega, Alvaro; García de la Torre, José. Influence of ionic strength on the flexibility of alginate studiedby size exclusion chromatography. Carbohydrate Polymers 102 (2014) 223- 230.
[55]
Lee, Jin W.; Ashby, Richard D.; Day, Donal F. Role of acetylation on metal induced precipitation of alginates. Carbohydrare Pdymers 29 (1996) 337-345.
[56]
Ci, Sherry X.; Huynh, Tanya H.; Louie, Leslie W.; Yang, Andrew; Beals, Bridget J.; Ron, Nilesh; Tsang, Wen-Ghih; Soon-Shiong, Patrick; Desai, Neil P. Molecular mass distribution of sodium alginate by high-performance size-exclusion chromatography. Journal of Chromatography A, 864 (1999) 199-210.
[57]
Kong, Hyun Joon; Kaigler, Darnell; Kim, Kibum; Mooney, David J. Controlling Rigidity and Degradation of Alginate Hydrogels via Molecular Weight Distribution. Biomacromolecules 2004, 5, 1720-1727.
[58]
Priego-Jimenez, Ruben; Peña, Carlos; Ramirez, Octavio T.; Galindo, Enrique. Specific growth rate determines the molecular mass of the alginate produced by Azotobacter vinelandii. Biochemical Engineering Journal 25 (2005) 187-193.
[59]
Rioux, L.-E.; Turgeon, S.L.; Beaulieu, M. Characterization of polysaccharides extracted from brown seaweeds. Carbohydrate Polymers 69 (2007) 530-537.
[60]
Morris, G.A.; Butler, S.N.G.; Foster, T.J.; Jumel, K.; Harding, S.E. Elevated-temperature analytical ultracentrifugation of a low-methoxy polyuronide. Progr Colloid Polym Sci 113 (1999) 205-208.
[61]
Windhues, T.; Borchard, W. Effect of acetylation on physico-chemical properties of bacterial and algal alginates in physiological sodium chloride solutions investigated with light scattering techniques. Carbohydrate Polymers 52 (2003) 47-52.
[62]
Masuelli, Martin A. Viscometric study of pectin. Effect of temperature on the hydrodynamic properties. International Journal of Biological Macromolecules 48 (2011) 286-291.
[63]
Huggins M.L. The Viscosity of Dilute Solutions of Long-Chain Molecules. IV. Dependence on Concentration. J. Am. Chem. Soc., 64, 11 (1942) 2716-2718.
[64]
Kraemer, E. O., Molecular Weights of Celluloses and Cellulose Derivates. Ind. Eng. Chem. 30, (1938) 1200-1204.
[65]
Schulz, G. V. and Blaschke, F. (1941) Eine Gleichung zur Berechnung der Viskositatszahl fur sehr kleine Konzentrationen. J. Prakt. Chem., 158 (1941) 130-135.
[66]
Martin, A. F. Abstr. 103rd Am. Chem. Soc. Meeting, p. 1-c ACS (1942).
[67]
Leo B. Genung & I. Lee Gage. Calculation of Intrinsic Viscosities by the Baker-PhiIippoff Equa tion. Analytical Chemistry 34 (1962) 549-552.
[68]
Solomon, O. F.; Ciut I. Z. Détermination de la viscosité intrinsèque de solutions de polymères par une simple détermination de la viscosité. Journal of Applied Polymer Science 6 (1962) 683-686.
[69]
Deb P.C., Chatterjee S.R. Unperturbed dimension of polymer molecules from viscosity measurements. Die Makromolekulare Chemie 120, 1 (1968) 49-57.
[70]
Deb P.C., Chatterjee S.R. On polynomial expansion of log relative viscosity. Die Makromolekulare Chemie 125, 1 (1969) 283-285.
[71]
Ram Mohan Rao M. V., Yaseen M. Determination of intrinsic viscosity by single specific viscosity measurement. Journal of Applied Polymer Science 31, 8 (1986) 2501-2508.
[72]
Kuwahara N. On the polymer-solvent interaction in polymer solutions. Journal of Polymer Science Part A.1, 7, (1963) 2395-2406.
[73]
Palit S.R., Kar I. Polynomial expansion of log relative viscosity and its application to polymer solutions. Journal of Polymer Science Part A-1, 5, 10 (1967) 2629-2636.
[74]
Maron, Samuel H. Determination of intrinsic viscosity from one-point measurements. Journal of Applied Polymer Science 5, 15 (1961) 282-284.
[75]
Chee K.K. A critical evaluation of the single-point determination of intrinsic viscosity. Journal of Applied Polymer Science 34, 3 (1987) 891-899.
[76]
Curvale, R.A., Cesco, J.C. Intrinsic viscosity determination by "single-point" and "double-point" equations. Applied Rheology 19, 5 (2009) 53347.
[77]
Mark, H. in Der feste Körper (ed. Sänger, R.), 65-104 (Hirzel, Leipzig, 1938).
[78]
Houwink, R., Zusammenhang zwischen viscosimetrisch und osmotisch bestimm- ten polymerisationsgraden bei hochpolymeren. J. Prakt. Chem., 157 (1940) 15.
[79]
Curvale, R.; Masuelli, M.; Perez Padilla, A. Intrinsic viscosity of bovine serum albumin conformers. International Journal of Biological Macromolecules 42 (2008) 133-137.
[80]
Harding, S. E.; Varum, K.; Stoke B., Smidsrod, O. Molecular weight determination of polysaccharides. Advances in Carbohydrate Analysis 1 (1991) 63-144.
[81]
Harding, Stephen E. The Viscosity Intrinsic of Biological Macromolecules. Progress in Measurement, Interpretation and Application to Structure in Dilute Solution. Progress in Biophysical Molecules Biological 68 (1997) 207-262.
[82]
Masuelli, Martin Alberto. Advances in Physical Chemistry, Vol. 2013 (2013), Article ID 360239, pp. 8. http://dx.doi.org/10.1155/2013/360239.
[83]
Takara, Andres; Acosta, Adolfo; Masuelli, Martin A. Hydrodynamic Properties of Tragacanthin. Study of temperature influence. Journal Argentine Chemical Society 100 (2013) 25-34.
[84]
Masuelli, Martin A. Hydrodynamic Properties of Whole Arabic Gum. American Journal of Food Science and Technology 1(3) (2013) 60-66.
[85]
Masuelli, Martin Alberto. Dextrans in Aqueous Solution. Experimental Review on Intrinsic Viscosity Measurements and Temperature Effect. Journal of Polymer and Biopolymer Physics Chemistry 1(1) (2013) 13-21.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved