Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Optoelectronic Properties of Evaporated Earth-Abundant, Kuramite Cu3SnS4 Thin Films for Photovoltaic Cells
Current Issue
Volume 4, 2018
Issue 4 (July)
Pages: 57-65   |   Vol. 4, No. 4, July 2018   |   Follow on         
Paper in PDF Downloads: 44   Since Aug. 31, 2018 Views: 986   Since Aug. 31, 2018
Authors
[1]
Joseph Abiodun Amusan, Departmentof Physics, University of Port Harcourt, Choba, Port Harcourt, Rivers State, Nigeria.
[2]
Samuel Ogochukwu Azi, Departmentof Physics, University of Benin, Benin City, Edo State, Nigeria.
Abstract
The earth-abundant Cu-Sn precursor was thermally evaporated sequentially on microscopic glass slides at substrate temperature of 100°C with control thickness of 100nm and 500nm. The deposited bi-layer of Cu-Sn precursor was then sulphurized at 400°C in a custom-built reactor for 1hour. The deposition was uniformly spread on the microscopic glass substrate. The XRD spectra revealed the crystal structure, phase and lattices as Kuramite, Tetragonal, Polycrystalline Cu3SnS4 [112], d = 3.130 and at 2Ѳ = 28.49°. The SEM revealed a densely packed, pin-hole free Cu3SnS4 thin film of grain size of approximately 2µm. The surface profiler revealed that the evaporated Cu3SnS4 thin film was rough. Ra = 77.85nm and Rq = 99.79nm for Cu3SnS4 films evaporated at 100°C with controlled thickness of 100nm. Ra = 1205.06nm and Rq = 1486.62nm for Cu3SnS4 films evaporated at 100°C with controlled thickness of 500nm. The electrical resistivity of the film was found to be 46.1532Ω-cm. The absorption coefficient is in the order of >105cm-1 and the energy gap, Eg, is 1.46eV. The refractive index, n is in the range of 5.5 – 6.03. Hence, evaporated Cu3SnS4 thin film is proposed as good potential material suitable for non-toxic, low cost, earth abundant absorber layer of solar cell.
Keywords
Coefficient of Absorbance, Electrical Resistivity, Energy Gap, Glass Substrate, Sulphurization, Thermal Evaporation
Reference
[1]
Anuar K., Tan W. T. Atan M. S., Dzulkelfly K., Abdullah, M. D. Jelas H., Ho S. M. and Nagalingam S. (2009). Influence of Bath Temperature and PH value on properties of chemically deposited C4SnS4 thin films, Journal of Chilean Society, Vol. 54 (3), pages 256-259.
[2]
Ghosh, B., Das, M., Banerjee, P., Das, S. (2008). Fabrication of vacuum-evaporated SnS/CdS heterojunction for PV applications, Solar Energy Materials and Solar Cells, Vol. 92, pages 1099-1104. DOI: 10.1016/j.solmat.2008.03.016.
[3]
Ali, A. M, Inokuma T., Hasegawa, S. (2006). Structural and Photo-luminescence properties of nano-crystalline silicon films deposited at low temperature by plasma-enhanced chemical vapour deposition, Applied Surface Science, Vol. 253 (3), pages 1198-1204.
[4]
Berrigan, R. A., Maung, N., Iruine, S. J. C, Cole-Hamilton, D. J., Ellis, D. J. (1998). Thin films of CdTe/CdS grown by MOCVD for photovoltaics, Journal of Crystal Growth, Vol. 195 (1), pages 718-724.
[5]
Timoumi, A., Bouzouta, H., Kanzari, M., Rezig, B. (2005). Fabrication and characterization of In2S3 Thin Films Depositedby Thermal Evaporation Technique, Thin Solid Films, Vol, 480– 481, pages 124-128.
[6]
Khallaf H., Oladeji, I. O., Chow, L. (2008). Optimization of Chemical Bath Deposited CdS Thin Films using Nitrilotriacetic and as a complexing agent, Thin Solid Films, Vol, 516 (18), pages 5967-5973.
[7]
Armstrong, S., Datta, P. K., Miles, R. W. (2002). Properties of Zinc Sulphur Selenide Deposited Using a Close- SpacedSublimation Method, Thin Solid Films, Vol. 403-404, pages 126-129.
[8]
Barkat, I., Hamdadou, N., Mordi, M., Khehil, A., Bernede, J. C. (2006). Growth and Characterization of CuFeS2 Thin Films, Journal of Crystal Growth, Vol. 297, pages 426-431.
[9]
Beyhan S., Suzer, S., Kadirgan, F. (2007). Complexing agent effect on the stoichiometric ratio of the electrochemically prepared CuInSe2 thin film, Solar Energy Materials and Solar cells, Vol. 91, pages 1922-1926.
[10]
Gupta, A., Parikh V. and Compaan, A. D. (2006). High Efficiency Ultra-Thin Sputtered CdTe Solar Cells, Solar Energy materials and Solar cells, Vol. 90 (15), pages 2263-2271.
[11]
Gautier, C., Breton, G., Novaoura, M., Cambon, M., Chara S., Averous M. (1998). Sulfide Films on PbSe thin film layer grown by MBE, Thin Solid Films, Vol. 315 (1-2), pages 118-122.
[12]
Oja, I., Nanu, M., Katerski, A., Krunks, M., Mere, A., Raudoja, J., Goossens, A. (2005). Crystal quality Studies of CuInS2 films prepared by spray Pyrolisis, Thin Solid Films, Vol. 480-481, pages 82-86.
[13]
Amusan, J. A., Azi, S. O., Abubakar, D. A. and Zebaze Kana, M. G. (2015). Optoelectronic Characterizations of vacuum evaporated Cu2SnS3 thin films for device applications, Scientia Africana, Vol. 14 (1), pages 75-84.
[14]
Agrawal K., Jin Micheal H. C., Sundaramoorthy, R. (2008). Thermally Activated Sulfurization of In-Cu bi-layers for CuInS2 Solar cells, Published thesis in Photovoltaic Specialists Conference (PVSC’08), 33rd IEEE, pages 1-5. DOI: 10.1109/PVSC.2008.4922547.
[15]
Anuar, K., Ho, S. M., Tan, W. T., Atan, S., Kuang, Z., Haron, M. J. and Saravanan, N. (2008). Effects of Bath temperature on the Electrode position ofCu4SnS4 Thin Films, Journal of Applied Sciences Research, Vol. 4 (12), pages 1701-1707.
[16]
Schroder D. K. Semiconductor Material and Device Characterization, Wiley, New York, 1990.
[17]
Kamoun, N., Bouzouta, H., Rezig B. (2007). Fabrication and Characterization of Cu2ZnSnS4 thin films deposited by Spray Pyrolisis technique, Thin Solid Films, Vol. 515, pages 5949-5952.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved