Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News Unsubscribe Page
Critical Heat Flux Enhancement Using Nanofluids and Hybrid Nanofluids: A Review
Current Issue
Volume 4, 2018
Issue 3 (May)
Pages: 35-56   |   Vol. 4, No. 3, May 2018   |   Follow on         
Paper in PDF Downloads: 35   Since Aug. 9, 2018 Views: 474   Since Aug. 9, 2018
Authors
[1]
Jason Bolton, School of Applied Sciences, University of Huddersfield, Huddersfield, UK.
[2]
Lande Liu, School of Applied Sciences, University of Huddersfield, Huddersfield, UK.
[3]
Jonathan Andrew Hinks, School of Computing and Engineering, University of Huddersfield, Huddersfield, UK.
[4]
John Chee Chai, School of Computing and Engineering, University of Huddersfield, Huddersfield, UK.
Abstract
Due to the significantly enhanced thermal properties of nanofluids, a considerably large amount of research has been performed to further develop this heat transfer medium. Not only has research been carried out in homogeneous suspensions of nanoparticles but research into the effectiveness of hybrid nanofluids has also been conducted. It has been observed experimentally that the critical heat flux (CHF) can also be enhanced by having low volume concentrations of nanoparticles in suspension. An up to 700% for hybrid opposed to up to 300% for having non-hybrid nanoparticles have been reported. This review covers the models used to predict the enhancements of thermal conductivity and convective heat transfer coefficient. Moreover, the main focus is given to the CHF enhancement with the possible mechanisms and explanations proposed for such an enhancement. Nanoparticles’ deposition onto the heating surface together with the contact angle reduction and capillary wicking are thought to be the underlying causes for CHF enhancement. The Zuber correlation and Kandllikar’s model have been found to be able to describe some experimental CHE enhancement data reasonably well. Onto the stability issue, among the three commonly used methods: chemical stabilisation, polymer stabilisation and sonication, it is thought that the chemical approach is favored as it is less affected by the operating and environmental conditions. Towards potential industrial applications, quantitative understanding of the enhancement mechanisms and maintaining long period of stability together with real time characterisation techniques of nanoparticles in fluids are thought to still remain as the main obstacles lying ahead to be addressed, and indeed, these are still the real challenges.
Keywords
Critical Heat Flux, Heat Transfer, Heat Transfer Enhancement, Nanofluids, Nanoparticles
Reference
[1]
S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, San Francisco, 99-105, 1995.
[2]
T. T. Baby and S. Ramaprabhu, Experimental investigation of the thermal transport properties of a carbon nanohybrid dispersed nanofluid, Nanoscale 3 (2011) 2208-2214.
[3]
H. Akoh, Y. Tsukasaki, S. Yatsuya, and A. Tasaki, Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate, Journal of Crystal Growth 45 (1978) 495-500.
[4]
H.-t. Zhu, Y.-s. Lin, and Y.-s. Yin, A novel one-step chemical ethod for preparation of copper nanofluids, Journal of Colloid and Interface Science 277 (2004) 100-103.
[5]
D. K. Devendiran and V. A. Amirtham, A Review on Preparation, Characterization, Properties and Applications of Nanofluids, Renewable and Sustainable Energy Reviews 60 (2016) 21-40.
[6]
D. K. Devendiran and V. A. Amirtham, A Comprehensive Review of Preparation, Characterization, Properties and Stability of Hybrid Nanofluids, Renewable and Sustainable Energy Reviews (2017).
[7]
G. Paul, P. K. Das, and I. Manna, Synthesis, Characterization and Studies on Magneto-viscous Properties of Magnetite Dispersed Water Based Nanofluids, Journal of Magnetism and Magnetic Materials 404 (2016) 29-39.
[8]
A. Ghadimi, R. Saidur, and H. S. C. Metselaar, A Review of Nanofluid Stability Properties and Characterization in Stationary Conditions, International Journal of Heat and Mass Transfer 54 (2011) 4051-4068.
[9]
M. B. Moghaddam, E. K. Goharshadi, M. H. Entezari, and P. Nancarrow, Preparation, Characterization, and Rheological Properties of Graphene-Glycerol Nanofluids, Chemical Engineering Journal 231 (2013) 365-372.
[10]
R. M. Sarviya and V. Fuskele, Review on Thermal Conductivity of Nanofluids, Materials Today: Proceedings 4 (2017) 4022-4031.
[11]
R. L. Hamilton and O. K. Crosser, Thermal conductivity of heterogeneous two-component systems, Ind. Eng. Chem. Fundam. 1 (1962) 187.
[12]
J. C. Maxwell, Electricity and Magnetism, Vol. 1. Clarendon Press, Oxford, UK, 1873.
[13]
D. J. Jeffrey, Conduction through a random suspension of spheres, Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences 335 (1602) (1973) 355-367.
[14]
W. Yu and S. U. S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. Nanopart. Res. 5 (2003) 167.
[15]
S. A Angayarkanni and J. Philip, Review on thermal properties of nanofluids: Recent developments, Advances in Colloid and Interface Science 225 (2015) 146-176.
[16]
J. C. Maxwell, A treatise on electricity and magnetism, 2nd ed ed. Clarendon Press, 1881.
[17]
D. A. G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen, Annalen der Physik 416 (7) (1935).
[18]
W. Yu and S. U. S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton–Crosser model, Journal of Nanoparticle Research 6 (4) (2004) 355-361.
[19]
Z. Hashin and S. Shtrikman, A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials, Journal of Applied Physics 33 (10) (1962).
[20]
J. Avsec and M. Oblak, The calculation of thermal conductivity, viscosity and thermodynamic properties for nanofluids on the basis of statistical nanomechanics, International Journal of Heat and Mass Transfer 50 (21-22) (2007) 4331-4341.
[21]
X. Yimin and Q. Li, Investigation on Convective Heat Transfer and Flow Features of Nanofluids, Journal of Heat Transfer 125 (1) (2003) 151-155.
[22]
B. C. Pak and Y. I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer 11 (2) (1998) 151-170.
[23]
D. H. Kumar, H. E. Patel, V. R. R. Kumar, T. Sundararajan, T. Pradeep, and S. K. Das, Model for Heat Conduction in Nanofluids, Physical Review Letters 93 (2004) 144301.
[24]
M. Chandrasekar, S. Suresh, R. Srinivasan, and A. C. Bose, New Analytical Models to Investigate Thermal Conductivity of Nanofluids, Journal of Nanoscience and Nanotechnology 9 (1) (2009) 533-538.
[25]
R. Prasher, P. Bhattacharya, and P. E. Phelan, Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids), Physical Review Letters 94 (2005) 025901.
[26]
K. C. Leong, C. Yang, and S. M. S. Murshed, A model for the thermal conductivity of nanofluids – the effect of interfacial layer, Journal of Nanoparticle Research 8 (2) (2006) 245-254.
[27]
E. Yamada and T. Ota, Effective thermal conductivity of dispersed materials, Wärme - und Stoffübertragung 13 (1-2) (1980) 27-37.
[28]
S. K. Gupta, S. G. Advani, and P. Huq, Role of Micro-convection due to nonaffine motion of particle in mono-disperse suspension, International Journal of Heat and Mass Transfer 38 (2945-2958) (1995).
[29]
D. P. H. Hesselman and L. F. Johnson, Effective thermal conductivity of nanocomposites with interfacial thermal barrier resistance, Journal of Composite Materials 21 (1987) 508-515.
[30]
H. Xie, M. Fujii, and X. Zhang, Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture, International Journal of Heat and Mass Transfer 48 (14) (2005) 2926-2932.
[31]
S. P. Jang and S. U. Choi, Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids, Appl. Phys. Lett. 84 (21) (2004) 4316-4318.
[32]
E. V. Timofeeva, A. N. Gavrilov, J. M. McCloskey, Y. V. Tolmachev, S. Sprunt, L. M. Lopatina, and J. V. Selinger, Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory, Physical Review E 76 (2007).
[33]
B.-X. Wang, L.-P. Zhou, and X.-F. Peng, A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles, International Journal of Heat and Mass Transfer 46 (14) (2003) 2665-2672.
[34]
M. E. Meibodi, M. V. Sefti, A. M. Rashidi, A. Amrollahi, M. Tabasi, and H. S. Kalal, A model for thermal conductivity of nanofluids, Mater. Chem Phys 123 (2010) 639-643.
[35]
W. Wang, L. Lin, Z. X. Feng, and S. Y. Wang, A comprehensive model for enahnced thermal conductivity of nanofluids, J. Adv. Res Phys 3 (2012).
[36]
M. Corcione, Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids, Energy Conversion and Management 52 (1) (2011) 789-793.
[37]
B.-X. Wang, W.-Y. Sheng, and X.-F. Peng, A Novel Statistical Clustering Model for Predicting Thermal Conductivity of Nanofluid, International Journal of Thermophysics 30 (2009).
[38]
C. H. K. Chon, Kenneth D. Lee, S. P. Choi, and S. U. S., Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement, Appl. Phys. Lett. 87 (2005) 153107.
[39]
K. D. Kihm, C. H. Chon, J. S. Lee, and S. U. S. Choi, A new heat propagation velocity prevails over Brownian particle velocities in determining the thermal conductivities of nanofluids, Nanoscale Research Letters 6 (2011) 1-9.
[40]
W. Evans, Role of Brownian motion hydrodynamics on nanofluid thermal conductivity, Applied Physics Letters 88 (2006).
[41]
W. Evans, R. Prasher, J. Fish, P. Meakin, P. Phelan, and P. Keblinski, Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids, International Journal of Heat and Mass Transfer 51 (5-6) (2008).
[42]
B. Yang, Thermal Conductivity Equations Based on Brownian Motion in Suspensions of Nanoparticles (Nanofluids), Journal of Heat Transfer 130 (4) (2008).
[43]
L. Braginsky and V. Shklover, Thermal conductivity of low-particle-concentration suspensions: Correlation function approach, PHYSICAL REVIEW B 78 (2008).
[44]
R. S. Vajjha and D. K. Das, Experimental determination of thermal conductivity of three nanofluids and development of new correlations, International Journal of Heat and Mass Transfer 52 (21-22) (2009) 4675-4682.
[45]
C. J. Ho, L. C. Wei, and Z. W. Li, An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid, Applied Thermal Engineering 30 (2-3) (2010) 96-103.
[46]
S. Kakaç and A. Pramuanjaroenkij, Review of convective heat transfer enhancement with nanofluids, International Journal of Heat and Mass Transfer 52 (13) (2009) 3187-3196.
[47]
M. Vegad, S. Satadia, P. Pradip, P. Chirag, and P. Bhargav, Heat transfer characteristics of low Reynolds number flow of nanofluid around a heated circular cylinder, Procedia Technology 14 (2014) 348-356.
[48]
A. A. Minea and G. Lorenzini, A numerical study of ZnO based nanofluids behavior on natural convection, International Journal of Heat and Mass Transfer 114 (2017) 286-296.
[49]
T. Okawa, K. Nagano, and T. Hirano, Boiling heat transfer during single nanofluid drop impacts onto a hot wall, Experimental Thermal and Fluid Science 36 (2011) 78-85.
[50]
H. Lotfi and M. B. Shafii, Boiling heat transfer on a high temperature silver sphere in nanofluid, International Journal of Thermal Sciences 48 (2009) 2215-2220.
[51]
S. Vafaei, Nanofluid pool boiling heat transfer phenomenon, Powder Technology 277 (2015) 181-192.
[52]
S. H. Noie, S. Z. Heris, M. Kahani, and S. M. Nowee, Heat transfer enhancement using Al2O3/water nanofluid in a two-phase closed thermosyphon, International Journal of Heat and Fluid Flow 30 (2009) 700-705.
[53]
R. Kathiravan, R. Kumar, A. Gupta, R. Chandra, and P. K. Jain, Pool boiling characteristics of multiwalled carbon nanotube (CNT) based nanofluids over a flat plate heater, International Journal of Heat and Mass Transfer 54 (2011) 1289-1296.
[54]
K. H. Do, H. J. Ha, and S. P. Jang, Thermal resistance of screen mesh wick heat pipes using the water-based Al2O3 nanofluids, International Journal of Heat and Mass Transfer 53 (2010) 5888-5894.
[55]
D. Wen, M. Corr, X. Hu, and G. Lin, Boiling heat transfer of nanofluids: The effect of heating surface modification, International Journal of Thermal Sciences 50 (2011) 480-485.
[56]
H. D. Kim, J. Kim, and M. H. Kim, Effect of nanoparticles on CHF enhancement in pool boiling of nano-fluids, International Journal of Heat and Mass Transfer 49 (2006) 5070-5074.
[57]
S. Khandekar, Y. M. Joshi, and B. Mehta, Thermal performance of closed two-phase thermosyphon using nanofluids, International Journal of Thermal Sciences 47 (2008) 659-667.
[58]
J. S. Coursey and J. Kim, Nanofluid boiling: The effect of surface wettability, International Journal of Heat and Fluid Flow 29 (2008) 1577-1585.
[59]
M. N. Golubovic, H. H. D. M., W. M. Worek, and W. J. Minkowycz, Nanofluids and critical heat flux, experimental and analytical study, Applied Thermal Engineering 29 (2009) 1281-1288.
[60]
H. S. Ahn, S. H. Kang, C. Lee, J. Kim, and M. H. Kim, The effect of liquid spreading due to micro-structures of flow boiling critical heat flux, International Journal of Multiphase Flow 43 (2012) 1-12.
[61]
E. Forrest, E. Williamson, J. Buorgiorno, L.-W. Hu, M. Rubner, and R. Cohen, Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings, International Journal of Heat and Mass Transfer 53 (2010) 58-67.
[62]
S. Kim, H. D. Kim, H. Kim, H. S. Ahn, H. Jo, J. Kim, and M. H. Kim, Effects of nano-fluid and surfaces with nano structure on the increase of CHF, Experimental Thermal and Fluid Science 34 (2010) 487-495.
[63]
S. K. Verma and A. K. Tiwari, Characterization of Nanofluids as an Advanced Heat Transporting Medium for Energy Systems, Materials Today: Proceedings 4 (2017) 4095-4103.
[64]
M. Amani, P. Amani, A. Kasaeian, O. Mahian, and W.-M. Yan, Two-phase mixture model for nanofluid turbulent flow and heat transfer: Effect of heterogeneous distribution of nanoparticles, Chemical Engineering Science 167 (2017) 135-144.
[65]
R. V. Pinto and F. A. S. Fiorelli, Review of the mechanisms responsible for heat transfer enhancement using nanofluids, Applied Thermal Engineering 108 (2016) 720-739.
[66]
D. M. Vazquez and R. Kumar, Surface effects of ribbon heaters on critical heat flux in nanofluid pool boiling, International Communications in Heat and Mass Transfer 41 (2013) 1-9.
[67]
J. H. Kim, J. M. Kim, D. W. Jerng, E. Y. Kim, and H. S. Ahn, Effect of aluminum oxide and reduced graphene oxide mixtures on critical heat flux enhancement, International Journal of Heat and Mass Transfer 116 (2018) 858-870.
[68]
N. Zuber, On the stability of boiling heat transfer, Trans. Am. Soc. Mech. Engrs. 80 (1958) 711-720.
[69]
M. Dadjoo, N. Etesami, and M. N. Esfahany, Influence of orientation and roughness of heater surface on critical heat flux and pool boiling heat transfer coefficient of nanofluid, Applied Thermal Engineering 124 (2017) 353-361.
[70]
S. D. Park, S. B. Moon, and I. C. Bang, Effects of thickness of boiling-induced nanoparticle deposition on the saturation of critical heat flux enhancement, International Journal of Heat and Mass Transfer 78 (2014) 506-514.
[71]
H. S. Ahn and M. H. Kim, The boiling phenomenon of alumina nanofluid near critical heat flux, international Journal of Heat and Mass Transfer 62 (2013) 718-729.
[72]
R. A. Neto, J. L. G. Oliveira, and J. C. Passos, Heat transfer coefficient and critical heat flux during nucleate pool boiling of water in the presence of nanoparticles of alumina maghemite and CNTs, Applied Thermal Engineering 111 (2017) 1493-1506.
[73]
J. H. Lee, D. H. Kam, and Y. H. Jeong, The effect of nanofluid stability on critical heat flux using magnetite-water nanofluids, Nuclear Engineering and Design 292 (2015) 187-192.
[74]
R. Kamatchi and S. Venkatachalapathy, Parametric study of pool boiling heat transfer with nanofluids for enhancement of critical heat flux: A review, International Journal of Thermal Sciences 87 (2015) 228-240.
[75]
X. Fang, Y. Chen, H. Zhang, W. Chen, A. Dong, and R. Wang, Heat transfer and critical heat flux of nanofluid boiling: A comprehensive review, Renewable and Sustainable Energy Reviews 62 (2016) 924-940.
[76]
S. G. Kandlikar, A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation, Journal of Heat Transfer 123 (2001) 1071-1079.
[77]
D. H. Kam, Y. J. Choi, and Y. H. Jeong, Critical heat flux on downward-facing carbon steel flat plates under atmospheric condition, Experimental Thermal and Fluid Science 90 (2018) 22-27.
[78]
H. T. Phan, R. Bertossi, N. Caney, P. Marty, and S. Colassan, A model to predict the effect of surface wettability on critical heat flux, International Communications in Heat and Mass Transfer 39 (2012) 1500-1504.
[79]
Y. J. Choi, D. H. Kam, and Y. H. Jeong, Analysis of CHF enhancement by magnetite nanoparticle deposition in the subcooled flow boiling region, International Journal of Heat and Mass Transfer 109 (2017) 1191-1199.
[80]
R. Li and Z. Huang, A new CHF model for enhanced pool boiling heat transfer on surfaces with micro-scale roughness, International Journal of Heat and Mass Transfer 109 (2017) 1084-1093.
[81]
H. S. Ahn, C. Lee, J. Kim, and M. H. Kim, The effect of capillary wicking action of micro/nano structures on pool boiling critical heat flux, International Journal of Heat and Mass Transfer 55 (2012) 89-92.
[82]
S.-S. Park, Y. H. Kim, Y. H. Jeon, M. T. Hyun, and N.-J. Kim, Effects of spray-deposited oxidized multi-wall carbon nanotubes and graphene on pool-boiling critical heat flux enhancement, Journal of Industrial and Engineering Chemistry 24 (2015) 276-283.
[83]
S. Mori, S. M. Aznam, and K. Okuyama, Enhancement of the critical heat flux in saturated pool boiling of water by nanoparticle-coating and a honeycomb porous plate, International Journal of Heat and Mass Transfer 80 (2015) 1-6.
[84]
S. M. Aznam, S. Mori, A. Ogoshi, and K. Okuyama, CHF enhancement of a large heated surface by a honeycomb porous plate and a gridded metal structure in a saturated pool boiling of nanofluid, International Journal of Heat and Mass Transfer 115 (2017) 969-980.
[85]
S. Mori and Y. Utaka, Critical heat flux enhancement by surface modification in a saturated pool boiling: A review, International Journal of Heat and Mass Transfer 108 (2017) 2534-2557.
[86]
S. L. Song and S. H. Chang, An experimental study on CHF enhancement of wire nets covered surface in R-134a flow boiling under high pressure and high mass flux conditions, International Journal of Heat and Mass Transfer 90 (2015) 761-768.
[87]
V. Saeid and W. Dongsheng, Critical heat flux of nanofluids inside a single microchannel: Experiments and correlations, Chemical Engineering Research and Design 92 (2014) 2339-2351.
[88]
H. S. Ahn, H. D. Kim, H. J. Jo, S. H. Kang, W. P. Chang, and M. H. Kim, Experimental study of critical heat flux enhancement during forced convective flow boiling of nanofluid on a short heated surface, International Journal of Multiphase Flow 36 (2010) 375-384.
[89]
A. Mourgues, V. Hourtané, T. Muller, and M. Caron-Charles, Boiling behaviors and critical heat flux on a horizontal and vertical plate in saturated pool boiling with and without ZnO nanofluid, International Journal of Heat and Mass Transfer 57 (2013) 595-607.
[90]
H. S. Ahn, J. M. Kim, J. M. Kim, S. C. Park, K. Hwang, H. J. Jo, T. Kim, D. W. Jerng, M. Kaviany, and M. H. Kim, Boiling characteristics on the reduced graphene oxide films, Experimental Thermal and Fluid Science 60 (2015) 361-366.
[91]
C.-K. Huang, C.-W. Lee, and C.-K. Wang, Boiling enhancement by TiO2 nanoparticle deposition, International Journal of Heat and Mass Transfer 54 (2011) 4895-4903.
[92]
S. L. Song, J. H. Lee, and S. H. Chang, CHF enhancement of SiC nanofluid in pool boiling experiment, Experimental Thermal and Fluid Science 52 (2014) 12-18.
[93]
G. M. Son, K. M. Kim, and I. C. Bang, Chromia coating with nanofluid deposition and sputtering for accident tolerance, CHF enhancement, International Journal of Heat and Mass Transfer 118 (2018) 890-899.
[94]
S. W. Lee, S. D. Park, and I. C. Bang, Critical heat flux for CuO nanofluid fabricated by pulsed laser ablation differentiating deposition characteristics, International Journal of Heat and Mass Transfer 55 (2012) 6908-6915.
[95]
E. dos Santos Filho, F. J. dos Nascimento, D. C. Moreira, and G. Ribatski, Dynamic wettability evaluation of nanoparticles-coated surfaces, Experimental Thermal and Fluid Science 92 (2018) 231-242.
[96]
H. D. Kim, E. Kim, and M. H. Kim, Effect of nanoparticle deposit layer properties on pool boiling critical heat flux of water from a thin wire, International Journal of Heat and Mass Transfer 69 (2014) 164-172.
[97]
S. D. Park, S. W. Lee, S. Kang, S. M. Kim, H. Seo, and I. C. Bang, Effects of Al2O3/R-123 nanofluids containing C19H40 core–shell phase change materials on critical heat flux, International Journal of Heat and Mass Transfer 55 (2012) 7144-7150.
[98]
G. H. Seo, U. Jeong, H. H. Son, D. Shin, and S. J. Kim, Effects of layer-by-layer assembled PEI/MWCNT surfaces on enhanced pool boiling critical heat flux, International Journal of Heat and Mass Transfer 109 (2017) 564-576.
[99]
Y. Hu, Z. Liu, and Y. He, Effects of SiO2 nanoparticles on pool boiling heat transfer characteristics of water based nanofluids in a cylindrical vessel, Powder Technology 327 (2018) 79-88.
[100]
M. Meier, J. Ungerer, M. Klinge, and H. Nirschl, Synthesis of nanometric silica particles via a modified Stober synthesis route, Colloids and Surfaces A 538 (2018) 559-564.
[101]
Q. T. Pham, T. I. Kim, S. S. Lee, and S. H. Chang, Enhancement of critical heat flux using nano-fluids for Invessel Retention-External Vessel Cooling, Applied Thermal Engineering 35 (2012) 157-165.
[102]
V. I. Sharma, J. Buongiorno, T. J. McKrell, and L. W. Hu, Experimental investigation of transient critical heat flux of water-based zinc–oxide nanofluids, International Journal of Heat and Mass Transfer 61 (2013) 425-431.
[103]
S. D. Park and I. C. Bang, Experimental study of a universal CHF enhancement mechanism in nanofluids using hydrodynamic instability, International Journal of Heat and Mass Transfer 70 (2014) 844-850.
[104]
E. J. Park, S. D. Park, I. C. Bang, Y.-B. Park, and H. W. Park, Critical heat flux characteristics of nanofluids based on exfoliated graphite nanoplatelets (xGnPs), Materials Letters 81 (2012) 193-197.
[105]
W. S. Hummers Jr and R. E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc 80 (6) (1958) 1339.
[106]
E. J. Park, I. C. Bang, and H. W. Park, Experimental observation of the critical heat flux (CHF) enhancement of the nanofluids by the electrical explosion of a wire in liquid, International Journal of Heat and Mass Transfer 79 (2014) 868-875.
[107]
S. W. Lee, K. M. Kim, and I. C. Bang, Study on flow boiling critical heat flux enhancement of graphene oxide/water nanofluid, International Journal of Heat and Mass Transfer 65 (2013) 348-356.
[108]
G. Dewitt, T. J. McKrell, J. Buongiorno, L. W. Hu, and R. J. Park, Experimental study of critical heat flux with alumina-water nanofluids in downward-facing channels for in-vessel retention applications, Nuclear Engineering and Technology 45 (3) (2013).
[109]
H. S. Ahn, J. M. Kim, and M. H. Kim, Experimental study of the effect of a reduced graphene oxide coating on critical heat flux enhancement, International Journal of Heat and Mass Transfer 60 (2013) 763-771.
[110]
R. K. Cheedarala, E. Park, K. Kong, Y.-B. Park, and H. W. Park, Experimental study on critical heat flux of highly efficient soft hydrophilic CuO–chitosan nanofluid templates, International Journal of Heat and Mass Transfer 100 (2016) 396-406.
[111]
J. H. Lee, T. Lee, and Y. H. Jeong, Experimental study on the pool boiling CHF enhancement using magnetite-water nanofluids, International Journal of Heat and Mass Transfer (2012) 2656-2663.
[112]
S. D. Park and I. C. Bang, Flow boiling CHF enhancement in an external reactor vessel cooling (ERVC) channel using graphene oxide nanofluid, Nuclear Engineering and Design 265 (2013) 310-318.
[113]
T. I. Kim, W. J. Chang, and S. H. Chang, Flow boiling CHF enhancement using Al2O3 nanofluid and an Al2O3 nanoparticle deposited tube, International Journal of Heat and Mass Transfer 54 (2011) 2021-2025.
[114]
T. Lee., J. H. Lee, and Y. H. Jeong, Flow boiling critical heat flux characteristics of magnetic nanofluid at atmospheric pressure and low mass flux conditions, International Journal of Heat and Mass Transfer 56 (2013) 101-106.
[115]
J. L. G. O. A. Rainho Neto, J. C Passos, Heat transfer coefficient and critical heat flux during nucleate pool boiling of water in the presence of nanoparticles of alumina, maghemite and CNTs, Applied Thermal Engineering 111 (2017) 1493-1506.
[116]
R. Kamatchi and G. Kumaresan, Investigations on pool boiling critical heat flux, transient characteristics and bonding strength of heater wire with aqua based reduced graphene oxide nanofluids, Chinese Journal of Chemical Engineering 26 (2018) 445-454.
[117]
M. Kole and T. K. Dey, Investigations on the pool boiling heat transfer and critical heat flux of ZnO-ethylene glycol nanofluids, Applied Thermal Engineering 37 (2012) 112-119.
[118]
K.-J. Park, D. Jung, and S. E. Shim, Nucleate boiling heat transfer in aqueous solutions with carbon nanotubes up to critical heat fluxes, International Journal of Multiphase Flow 35 (2009) 525-532.
[119]
J. M. Kim, J. H. Kim, S. C. Park, M. H. Kim, and H. S. Ahn, Nucleate boiling in graphene oxide colloids: Morphological change and critical heat flux enhancement, International Journal of Multiphase Flow 85 (2016) 209-222.
[120]
S. M. Kwark, R. Kumar, G. Moreno, J. Yoo, and S. M. You, Pool boiling characteristics of low concentration nanofluids, International Journal of Heat and Mass Transfer 53 (2010) 972-981.
[121]
S. D. Park, S. W. Lee, S. Kang, S. M. Kim, and I. C. Bang, Pool boiling CHF enhancement by graphene-oxide nanofluid under nuclear coolant chemical environments, Nuclear Engineering and Design 252 (2012) 184-191.
[122]
H. S. Ahn, J. M. Kim, M. Kaviany, and M. H. Kim, Pool boiling experiments in reduced graphene oxide colloids. Part I – Boiling characteristics, International Journal of Heat and Mass Transfer 74 (2014) 501-512.
[123]
A. Amiri, M. Shanbedi, A. H., S. Zerinali Heris, S. N. Kazi, B. T. Chew, and H. Eshghi, Pool boiling heat transfer of CNT/water nanofluids, Applied Thermal Engineering 71 (2014) 450-459.
[124]
J.-Y. Jung, E. S. Kim, and Y. T. Kang, Stabilizer effect on CHF and boiling heat transfer coefficient of alumina/water nanofluids, International Journal of Heat and Mass Transfer 55 (2012) 1941-1946.
[125]
S. J. Kim, I. C. Bang, J. Buongiorno, and L. W. Hu, Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux, International Journal of Heat and Mass Transfer 50 (2007) 4105-4116.
[126]
Y. Wang, K. Deng, J. Wu, G. Su, and S. Qiu, The characteristics and correlation of nanofluid flow boiling critical heat flux, International Journal of Heat and Mass Transfer 122 (2018) 212-221.
[127]
G. Liang and I. Mudawar, Pool boiling critical heat flux (CHF) - Part 2: Assessment of models and correlations, International Journal of Heat and Mass Transfer (2017).
[128]
S. S. Kutateladze, On the transition to film boiling under natural convection, Kotloturbostroenie 3 (3) (1948) 10-12.
[129]
J. H. Lienhard and V. K. Dhir, Hydrodynamic Prediction of Peak Pool-boiling Heat Fluxes from Finite Bodies, Journal of Heat Transfer 95 (2) (1973) 152-158.
[130]
L. Wang, Y. Li, F. Zhang, F. Xie, and Y. Ma, Correlations for calculating heat transfer of hydrogen pool boiling, International Journal of Hydrogen Energy 41 (38) (2016) 17118-31.
[131]
W. M. Rohsenow and P. Griffith, Correlation of maximum heat transfer data for boiling of saturated liquids, Chem. Eng. Prog. Symp. Ser. 52 (1955) 47-49.
[132]
Y. Haramura and Y. Katto, A new hydrodynamic model of critical heat flux, applicable widely to both pool and forced convection boiling on submerged bodies in saturated liquids, International Journal of Heat and Mass Transfer 26 (3) (1983) 389-399.
[133]
V. V. Yagov, Is a crisis in pool boiling actually a hydrodynamic phenomenon?, International Journal of Heat and Mass Transfer 73 (2014) 265-273.
[134]
C.-K. Guan, J. F. Klausner, and R. Mei, A new mechanistic model for pool boiling CHF on horizontal surfaces, International Journal of Heat and Mass Transfer 54 (17-18) (2011) 3960-3969.
[135]
I. Mudawar, A. H. Howard, and C. O. Gersey, An analytical model for near-saturated pool boiling critical heat flux on vertical surfaces, International Journal of Heat and Mass Transfer 40 (10) (1997) 2327-2339.
[136]
M. S. El-Genk and H. Bostanci, Saturation boiling of HFE-7100 from a copper surface, simulating a microelectronic chip, International Journal of Heat and Mass Transfer 46 (10) (2003) 1842-1854.
[137]
I. P. Vishnev, Effect of orienting the hot surface with respect to the gravitational field on the critical nucleate boiling of a liquid, Journal of engineering physics 24 (1) (1973) 43-48.
[138]
M. Arik and A. Bar-Cohen. Ebullient cooling of integrated circuits by Novec fluids. in Intersociety Electronic Packaging Conf, Hawaii, USA. 2001
[139]
M. J. Brusstar and H. Merte Jr, Effects of heater surface orientation on the critical heat flux—II. A model for pool and forced convection subcooled boiling, International Journal of Heat and Mass Transfer 40 (17) (1997) 4021-4030.
[140]
J. Y. Chang and S. M. You, Heater Orientation Effects on Pool Boiling of Micro-Porous-Enhanced Surfaces in Saturated FC-72, Journal of Heat Transfer 118 (4) (1996) 937-943.
[141]
Y. A. Kirchenko and P. S. Chernyakov, Determination of the first critical thermal flux on flat heaters, Journal of engineering physics 20 (6) (1971) 699-703.
[142]
T. G. Theofanous and T.-N. Dinh, High heat flux boiling and burnout as microphysical phenomena: mounting evidence and opportunities, Multiphase Science and Technology 18 (3) (2006) 251-276.
[143]
L. Liao, R. Bao, and Z. Liu, Compositive effects of orientation and contact angle on critical heat flux in pool boiling of water, Heat and Mass Transfer 44 (12) (2008) 1447-1453.
[144]
M. M. Sarafraz and F. Hormozi, Convective boiling and particulate fouling of stabilized CuO-ethylene glycol nanofluids inside the annular heat exchanger, International Communications in Heat and Mass Transfer 53 (2014) 116-123.
[145]
X. Yimin and L. Qiang, Heat transfer enhancement of nanofluids, International Journal of Heat and Fluid Flow 21 (1) (2000) 58-64.
[146]
M. I. Pryazhnikov, A. V. Minakov, V. Y. Rudyak, and D. V. Guzei, Thermal conductivity measurements of nanofluids, International Journal of Heat and Mass Transfer 104 (2017) 1275-1282.
[147]
M. Lattuada, P. Sandkühler, H. Wu, J. Sefcik, and M. Morbidelli, Aggregation kinetics of polymer colloids in reaction limited regime: experiments and simulations, Advances in Colloid and Interface Science 103 (1) (2003) 33.
[148]
H. Uchikawa, S. Hanehara, and D. Sawaki, The Role of Steric Repulsive Force in the Dispersion of Cement Particles in Fresh Paste Prepared with Organic Admixture, Cement and Concrete Research 27 (1) (1997) 37-50.
[149]
N. A. C. Sidik, H. A. Mohammed, O. A. Alawi, and S. Samion, A Review on Preparation Methods and Challenges of Nanofluids, International Communications in Heat and Mass Transfer 54 (2014) 115-125.
[150]
M. Karimzadehkhouei, M. Shojaeian, K. Sendur, M. P. Mengüç, and A. Kosar, The effect of nanoparticle type and nanoparticle mass fraction on heat transfer enhancement in pool boiling, International Journal of Heat and Mass Transfer 109 (2017) 157-166.
[151]
V. Kumar, A. K. Tiwari, and S. K. Ghosh, Characterization and Performance of Nanofluids in Plate Heat Exchanger, Materials Today: Proceedings 4 (2017) 4070-4078.
[152]
F. Yu, Y. Chen, X. Liang, J. Xu, C. Lee, Q. Liang, P. Tao, and T. Deng, Dispersion stability of thermal nanofluids, Progress in Natural Science: Materials International 27 (2017) 531-542.
[153]
M. Kole and T. K. Dey, Thermophysical and pool boiling characteristics of ZnO-ethylene glycol nanofluids, International Journal of Thermal Sciences 62 (2012) 61-70.
[154]
Y. Wei, X. Huawing, C. Lifei, and L. Yang, Enhancement of thermal conductivity of kerosene-based Fe3O4 nanofluids prepared via phase-transfer method, Colloids and Surfaces A: Physiochemical and Engineering Aspects 355 (2010) 109-113.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved