Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News Unsubscribe Page
Transmission of Non-polarized (Natural) Light by One-Dimensional Magneto-Optical Resonator Structures
Current Issue
Volume 7, 2019
Issue 3 (September)
Pages: 49-54   |   Vol. 7, No. 3, September 2019   |   Follow on         
Paper in PDF Downloads: 10   Since Sep. 26, 2019 Views: 38   Since Sep. 26, 2019
Authors
[1]
Vasyl Morozhenko, Vadim Lashkaryov Institute of Semiconductor Physics, Kyiv, Ukraine.
Abstract
The article presents the theoretical studies of the optical properties of such metamaterials as the One-Dimensional Magneto-Optical Resonator Structures. An interaction between non-polarized (natural) light and a magneto-optical resonator structure in a magnetic field was investigated theoretically. The presented theoretical approach is based on matrix multiple-beam summation, taking into account both the phase difference and the difference in polarization direction caused by the Faraday rotation. Attention was paid to the transmission peculiarities of the One-Dimensional Resonator Structures with isotropic zero-field magneto-optic medium inside them. Both spectral and angular distributions of a natural light transmitted through the One-Dimensional Resonator Structure in a magnetic field were investigated. As a result of research, it has been found that, despite the stereotyped view, the magneto-optical rotation of non-polarized light clearly manifests itself in the above optical characteristics of the Resonator Structures. This is explained by the fact that the Faraday rotation changes the conditions of the multiple-beam interference of light inside the Structure. This leads to changes in the interference patterns of the spectral and angular distributions of transmitted natural light and also to the appearance of interference effects for p-polarized part of the light whose reflection coefficient is equal to zero. The results can be used to create new controllable optical devices, for investigation of Faraday-active material properties and for control of parameters of plane-parallel layers and structures.
Keywords
Metematerials, Magneto-Optical Resonator Structures, Faraday Effect, Interference, Transmission
Reference
[1]
H. Sun, Y. Lei, S. Fan, Q. Zhang, H. Guo, Cavity-enhanced room-temperature high sensitivity optical Faraday magnetometry, Phys. Lett. Sect. A Gen. At. Solid State Phys. 381 (2017) 129–135.
[2]
K. Sycz, W. Gawlik, J. Zachorowski, Resonant Faraday effect in a Fabry-Perot cavity, Opt. Appl. XL (2010) 633–639.
[3]
E. Taskova, S. Gateva, E. Alipieva, K. Kowalski, M. Glódź, J. Szonert, Nonlinear Faraday rotation for optical limitation, Appl. Opt. 43 (2004) 4178–4181.
[4]
H. Y. Ling, Theoretical investigation of transmission through a Faraday-active Fabry–Perot étalon, J. Opt. Soc. Am. A. 11 (1994) 754–758.
[5]
M. Zamani, A. Hocini, Giant magneto-optical Kerr rotation, quality factor and figure of merit in cobalt-ferrite magnetic nanoparticles doped in silica matrix as the only defect layer embedded in magnetophotonic crystals, J. Magn. Magn. Mater. 449 (2018) 435–439.
[6]
T. V. Mikhailova, V. N. Berzhansky, A. N. Shaposhnikov, A. V. Karavainikov, A. R. Prokopov, Y. M. Kharchenko, I. M. Lukienko, O. V. Miloslavskaya, M. F. Kharchenko, Optimization of one-dimensional photonic crystals with double layer magneto-active defect, Opt. Mater. (Amst). 78 (2018) 521–530.
[7]
A. H. Gevorgyan, S. S. Golik, Band structure peculiarities of magnetic photonic crystals, J. Magn. Magn. Mater. 439 (2017) 320–327.
[8]
D. O. Ignatyeva, G. A. Knyazev, P. O. Kapralov, G. Dietler, S. K. Sekatskii, V. I. Belotelov, Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications, Sci. Rep. 6 (2016).
[9]
D. Jahani, A. Soltani-Vala, J. Barvestani, H. Hajian, Magneto-tunable one-dimensional graphene-based photonic crystal, J. Appl. Phys. 115 (2014) 153101.
[10]
H. Da, G. Liang, Enhanced Faraday rotation in magnetophotonic crystal infiltrated with graphene, Appl. Phys. Lett. 98 (2011) 261915-261915-3.
[11]
K. H. Chung, T. Kato, S. Mito, H. Takagi, M. Inoue, Fabrication and characteristics of one-dimensional magnetophotonic crystals for magneto-optic spatial light phase modulators, J. Appl. Phys. 107 (2010) 09A930-09A930-1.
[12]
M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, J. Kim, Magnetophotonic materials and their applications, IEICE Trans. Electron. E91–C (2008) 1630–1638.
[13]
Q. Li, L. Hu, Q. Mao, H. Jiang, Z. Hu, K. Xie, Z. Wei, Light trapping and circularly polarization at a Dirac point in 2D plasma photonic crystals, Opt. Commun. 410 (2018) 431–437.
[14]
W. Zhou, H. ming Chen, K. Ji, Y. Zhuang, Vertically magnetic-controlled THz modulator based on 2-D magnetized plasma photonic crystal, Photonics Nanostructures - Fundam. Appl. 23 (2017) 28–35.
[15]
R. Deghdak, M. Bouchemat, M. Lahoubi, S. Pu, T. Bouchemat, H. Otmani, Sensitive magnetic field sensor using 2D magnetic photonic crystal slab waveguide based on BIG/GGG structure, J. Comput. Electron. 16 (2017) 392–400.
[16]
S. Baek, A. V. Baryshev, M. Inoue, Multiple diffraction in two-dimensional magnetophotonic crystals fabricated by the autocloning method, J. Appl. Phys. 109 (2011) 07B701-07B701-3.
[17]
M. E. Dokukin, A. V. Baryshev, A. B. Khanikaev, M. Inoue, Reverse and enhanced magneto-optics of opal-garnet heterostructures, Opt. Express. 17 (2009) 9062–9070.
[18]
Z. Wang, S. Fan, Optical circulators in two-dimensional magneto-optical photonic crystals, Opt. Lett. 30 (2005) 1989–1991.
[19]
A. Hocini, R. Moukhtari, D. Khedrouche, A. Kahlouche, M. Zamani, Magneto-photonic crystal microcavities based on magnetic nanoparticles embedded in Silica matrix, Opt. Commun. 384 (2017) 111–117.
[20]
V. V. Pavlov, P. A. Usachev, R. V. Pisarev, D. A. Kurdyukov, S. F. Kaplan, A. V. Kimel, A. Kirilyuk, T. Rasing, Optical study of three-dimensional magnetic photonic crystals opal/Fe 3O4, J. Magn. Magn. Mater. 321 (2009) 840–842.
[21]
R. Fujikawa, A. V. Baryshev, A. B. Khanikaev, J. Kim, H. Uchida, M. Inoue, Enhancement of Faraday rotation in 3D/Bi: YIG/1D photonic heterostructures, J. Mater. Sci. Mater. Electron. 20 (2009) 493–497.
[22]
J. Li, N., Tang, T., Li, J., Luo, L., Yao, Highly sensitive sensors of fluid detection based on magneto-optical Tamm state, Sens. Actuat. B. 265 (2018) 644–651.
[23]
Y. H. Wu, F. Cheng, Y. C. Shen, G. Q. Lu, L. L. Li, One-way transmission through merging of magnetic defect state and optical Tamm states, Optik, 127 (2016) 3740–3744.
[24]
A. B. Khanikaev, A. V. Baryshev, M. Inoue, Y. S. Kivshar, One-way electromagnetic Tamm states in magnetophotonic structures, Appl. Phys. Lett. 95 (2009) 011101-011101-3.
[25]
A. Yariv, P. Yen, Optical Waves in Crystals, John Wiley & Sons, 1984.
[26]
P. Lancaster, Theory of Matrices, Academic Press, New York-London, 1969.
[27]
O. Madelung, Semiconductors: Data Handbook. Berlin, Springer, 2004.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved