Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Geological, Multispectral and Aeromagnetic Expressions of Pegmatite Hosted Mineralization of Keffi Sheet 208 NE, North-Central Nigeria
Current Issue
Volume 5, 2018
Issue 4 (August)
Pages: 53-69   |   Vol. 5, No. 4, August 2018   |   Follow on         
Paper in PDF Downloads: 57   Since Aug. 10, 2018 Views: 1279   Since Aug. 10, 2018
Authors
[1]
Ejepu Jude Steven, Department of Geology, School of Physical Sciences, Federal University of Technology, Minna, Nigeria.
[2]
Arikawe Eniafe Adepitan, Prototype Engineering Development Institute (PEDI), National Agency for Science and Engineering Infrastructure (NASENI), Ilesha, Nigeria.
[3]
Abdullahi Suleiman, Department of Geology, School of Physical Sciences, Federal University of Technology, Minna, Nigeria.
Abstract
An integrated spectral and structural interpretation of pegmatite hosted mineralization was carried out in sheet 208 NE in order to characterise specific spectral and geophysical features in an attempt to narrow down areas for further mineral exploration. The area is characterized by over eighty pegmatites exposures hosted by the gneiss, schist and igneous rock units. Landsat 8 Operational Land Imager (OLI), Shuttle Radar Topographic Mission Digital Elevation Model (SRTM DEM) and aeromagnetic datasets with acquired field geological information were used in this study. Data obtained from field structural mapping was used to produce a rose diagram to illustrate principal joint directions. Landsat 8 image was processed using band ratios for RGB colour composites for lineament extraction and target selection. SRTM DEM and aeromagnetic data were also processed to obtain derivative maps from which lineaments were also extracted. Lineaments from different datasets were integrated to form a composite lineament map of the area. Pegmatite bodies are more prominent in the schist. Geological boundaries and contact zones and a few shear zones have metal bearing pegmatites. Foliation planes (schist and gneiss) and fractures of granites are all rich with pegmatite veins and dykes. Rare-metal pegmatites are close to major and subsidiary fault structures. Structural analyses revealed a major NE-SW for the magnetic lineaments and NW-SE trend for the surface lineaments. Alteration zones marked by the presence of iron oxides, hydroxyl- bearing minerals and hydrothermal clays were delineated from a composite of different band ratios. The result of this study positively supports a more detailed exploration from selected alteration zones.
Keywords
Pegmatites, Mineral Exploration, Remote Sensing, Aeromagnetic Data, Lineaments
Reference
[1]
Matheis, G. (1987). Nigerian rare-metal pegmatites and their lithological framework. Geological Journal, Vol. 22, Thematic Issue, 271-291.
[2]
Garba, I., (2003). Geochemical Discrimination of Newly discovered rare-metal bearing and barren pegmatites in the Pan-African (600±150 Ma) basement of northern Nigeria. Applied Earth Science (Trans. Inst. Min. Metall.), vol. 112.
[3]
Olugbenga A., Okunlola O. A. and Ocan O. O. (2009). Rare metal (Ta-Sn-Li-Be) distribution in Precambrian pegmatites of Keffi area, Central Nigeria. Nature and Science. 7 (7). ISSN 1545-0740. http://www.sciencepub.net
[4]
Tanko, I., Adam, M., Dambring, P. (2015). Field features and mode of emplacement of pegmatites of Keffi area, north central Nigeria. Int. J. Sci. Technol. Res. Volume 4, Pages 214-229.
[5]
Obaje, N. G. (2009). Geology and Mineral Resources of Nigeria: Germany: Springer Publishers.
[6]
Oyinloye, A. O. (2011). Geology and geotectonic setting of the basement complex rocks in South Western Nigeria: implications on provenance and evolution. In Earth and Environmental Sciences. InTech.
[7]
Kayode, J. S., Nawawi, M. N. M., Abdullah, K. B., & Khalil, A. E. (2017). Integrating aeromagnetic and Landsat™ 8 data into subsurface structural mapping of Precambrian basement complex. Journal of African Earth Sciences, 125, 202-213.
[8]
Aliyu, A. S., Musa, Y., Liman, M. S., Abba, H. T., Chaanda, M. S., Ngene, N. C., & Garba, N. N. (2018). Determination of rare earth elements concentration at different depth profile of Precambrian pegmatites using instrumental neutron activation analysis. Applied Radiation and Isotopes, 131, 36-40.
[9]
Akande, S. O. and Reynolds, P. H. (1990). 40Ar/ 39Ar spectrum ages of micas from the Sn-Nb-Ta bearing pegmatites in Nigeria. In: Proceeding, Volume 15, Colloquium of African Geology. Centre International Pour la Formation Et les Echanges Geologiques (CIFEG) Occassional Publication 1990/20 p243.
[10]
Dada, S. S., Lancelot, J. R. and Briqueu, I. (1987). Age and origin of a Pan-African charnockitic complex: U-Pb and Rb-Sr evidence from the charnockitic complex at Toro, Northern Nigeria. Abtr. Vol. 14 Coll. Afri. Geol. Berlin, 72-73.
[11]
Umeji, A. C. and Caen-Vachette, M. (1984) Geochronology of Pan-Africa Nasarawa Eggon and Mkar Gboko granites, South East Nigeria. Precambr. Res. 23, 317-324.
[12]
Matheis, G. and Caen-Vachette, M. (1983). Rb-Sr isotopic study of rare-metal bearing and barren pegmatites in the Pan-African reactivation zone of Nigeria. J. Afr. Ear. Sci. 1, 35-40.
[13]
Rahaman, M. A., Emofurieta, W. D., Caen-Vachette, M. (1983). The potassic granites of the Igbeti area: Further evidence of the polycyclic evolution of the Pan-African belt in South-Western Nigeria. Precamb. Res. 22, 27-92.
[14]
Olisa, O. G., Okunlola, O. A., & Omitogun, A. A. (2018). Rare Metals (Ta-Nb-Sn) Mineralization Potential of Pegmatites of Igangan Area, Southwestern Nigeria. Journal of Geoscience and Environment Protection, 6 (04), 67.
[15]
Ball, E. (1980). An example of very consistent brittle deformation over a wide intracontinental area: the late Pan-African fracture system of Tuareg and Nigerian shield. Tectonophysics, 61: 363-379.
[16]
Holt, R., Egbuniwe, I. G., Fitches, W. R. and Wright, J. B. (1978). The relationship between low-grade metasedimentary belts, Calc-alkaline volcanism and the Pan-African Orogeny in NW Nigeria. Geol. Rundsch, 67, pp- 631-646.
[17]
Awoyemi, M. O., Hammed, O. S., Falade, S. C., Arogundade, A. B., Ajama, O. D., Iwalehin, P. O., & Olurin, O. T. (2017). Geophysical investigation of the possible extension of Ifewara fault zone beyond Ilesa area, southwestern Nigeria. Arabian Journal of Geosciences, 10 (2), 27.
[18]
McCurry, P. (1973). Geology of degree Sheet 21 (Zaria). Overseas Geology and Mineral Resources, 45 HMSO, London.
[19]
Ajibade, A. C. (1989). Provisional Classification of the Schist Belts of North-Western Nigeria. In Kogbe, C. A. (Eds.), Geology of Nigeria (pp. 85-90). Rockview International, Jos.
[20]
Kuster, D. (1990). Rare-metal pegmatites of Wamba, Central Nigeria-their formation in relationship to late Pan-African granites. Mineralium Deposita 25, 25-33.
[21]
Garba, I. (1992). Geology, geochemistry and origin of gold mineralization at Bin Yauri, Nigeria. PhD Thesis, University of London, UK. pp 264.
[22]
Ekwueme, B. N. and Matheis, G. (1995). Geochemistry and economic value of pegmatites in the Precambrian basement of Southeast Nigeria. In: Magmatism in relation to diverse tectonic settings (Eds. R. K. Srivastava and R. Chandra), 375-392p. New Delhi, Oxford & IBH Publishing Co.
[23]
Garba, I. (2002). Late Pan-African Tectonics and origin of Gold Mineralisation Rare-Metal Pegmatites in the Kushaka Schist Belt, North-Western Nigeria. Journ. of in. and Geol. 38 (1) 2002, 1-12.
[24]
Gupta, R. P. (2017). Remote sensing geology. Springer.
[25]
O'Leary, D. W., Friedman, J. D. & Pohn, H. A. (1976). Lineament, linear, lineation: Some proposed new standards for old terms. Geological Society of America Bulletin, 87, 1463–1469.
[26]
Knepper, D. H., Jr., (1989). Mapping hydrothermal alteration with Landsat Thematic Mapper data, Lee, Keenan, ed., Remote sensing in exploration geology — A combined short course and field trip: 28th International Geological Congress Guidebook T182, p. 13–21.
[27]
Cudahy, T. J., Caccetta, M., Thomas, M., Hewson, R. D., Abrams, M., Kato, M.,... Mitchell, R. (2016). Satellite-derived mineral mapping and monitoring of weathering, deposition and erosion. Scientific reports, 6, [23702]. doi: 10.1038/srep23702.
[28]
Madani, A. A (2009). Utilization of Landsat ETM+ Data for Mapping Gossans and Iron Rich Zones Exposed at Bahrah Area, Western Arabian Shield, Saudi Arabia. JKAU: Earth Sci., Vol. 20 No. 1, pp: 35-49.
[29]
Singer, R. B. (1981). Near-infrared spectral reflectance of mineral mixtures – systematic combinations of pyroxenes, olivine, and iron oxides, J. Geophys. Res., 86, 7967–7982. doi: 10.1029/JB086iB09p07967.
[30]
Hunt, G. R. (2017). Spectroscopic properties of rocks and minerals. In Handbook of Physical Properties of Rocks (1982) (pp. 295-386). CRC Press.
[31]
Blakely, R. J. (1995). Potential Theory in Gravity and Magnetic Applications. Brooklyn, NY: Cambridge University Press.
[32]
Watkins, D. (2018). 30-Meter SRTM Tile Downloader. Retrieved from: http://dwtkns.com/srtm30m/.
[33]
Reuter, M., Buchwitz, M., Hilker, M., Heymann, J., Schneising, O., Pillai, D.… (2014). Satellite-inferred European carbon sink larger than expected. Atmos. Chem. Phys., 14, 13739-13753. https://doi.org/10.5194/acp- 14-13739-2014.
[34]
USGS/NASA (2015). Landsat 8 (L8) Data User’s Handbook; USGS/NASA: Sioux Falls, SD, USA, p. 106.
[35]
U.S. Geological Survey. (2018). EarthExplorer. Retrieved from: https://earthexplorer.usgs.gov
[36]
Reynolds, R. L., Rosenbaum, J. G., Hudson, M. H., & Fishman, N. S. (1990). Rock magnetism, the distribution of magnetic minerals in the Earth’s crust, and aeromagnetic anomalies, in Hanna, W. F., ed., Geologic applications of modern aeromagnetic surveys: U.S. Geological Survey Bulletin 1924, p. 24–45.
[37]
International Geomagnetic Reference Field - 11th Generation (2009). https://www.ngdc.noaa.gov/metaview/page?xml=NOAA/NESDIS/NGDC/MGG/GeophysicalModels/iso/xml/IGRF11.xml&view=getDataView&header=none.
[38]
Briggs, I. C. (1974). Machine contouring using minimum curvature. Geophysics, 39 (1), 39-48.
[39]
ITC (2007). Integrated Land and Water Information System (ILWIS). ILWIS 3.31 Academic. University of Twente, Netherlands.
[40]
Li, M. (2017). Aeromagnetic and Spectral Expressions of Rare Earth Element Deposits in Gallinas Mountains Area, Central New Mexico, USA.
[41]
Sabins, F. (1997). Remote Sensing: Principles and interpretation (2nd ed.). NY: Freeman.
[42]
Shalaby, M. H., Bishta, A. Z., Roz, M. E., & El Zalaky, M. A. (2010). Integration of geologic and Remote Sensing Studies for the Discovery of Uranium Mineralization in Some Granite Plutons, Eastern Desert, Egypt. Journal of King Abdulaziz University: Earth Sciences, 21 (1).
[43]
Dehnavi, A. G., Sarikhani, R., & Nagaraju, D. (2010). Image processing and analysis of mapping alteration zones in environmental research, East of Kurdistan, Iran. World Applied Sciences Journal, 11, 278–283.
[44]
Howari, F. M., Baghdady, A. and Goodell, P.C. (2007). Mineralogical and geomorphological characterization of sand dunes in the eastern part of United Arab Emirates using orbital remote sensing integrated with field investigations. Geomorphology, 83, pp. 67-81.
[45]
Exelis Visual Information Solutions (2012). ENVI Classic Help. Boulder, Colorado: Exelis Visual Information Solutions.
[46]
Rabaça, T., Vicente, A. M. P. & Pereira, A. J. S. C. (2006). Appliance of spectral data from the optical and microwave data to the geological mapping of central Portugal: preliminary data (in Portuguese). Proceedings of the VII National Congress of Geology, III, University of Évora, pp. 1119-1122.
[47]
Nabighian, M. N. (1984). Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transform: Fundamental relations. Geophysics, 47, 780-786.
[48]
Miller, H. G. and Singh, V. (1994). Potential-field tilt - a new concept for location of potential-field sources. Journal of Applied Geophysics, v. 32, p. 213-217.
[49]
Airo, M. L. (2005). Regional interpretation of aerogeophysical data: Extracting compositional and structural features. In Airo, M. L. (Eds.), Aerogeophysics in Finland 1972–2004: Methods, System Characteristics and Applications. Geological Survey of Finland, Special Paper 39, 21–74.
[50]
Thurston, J. B., & Smith, R. S. (1997). Automatic conversion of magnetic data to depth, dip, susceptibility contrast using the SPITM method. Geophysics, 62, 807–813.
[51]
Telford W. M., Geldart, L. P. & Sheriff, R. E. (1990). Applied geophysics, Cambridge University Press.
[52]
Oluyide, P. O. (1988). Structural trends in the Nigerian Basement Complex. In: Precambrian Geology of Nigeria. Geological Survey of Nigeria, pp. 93-98.
[53]
Megwara, J. U. & Udensi, E. E. (2014). Structural Analysis Using Aeromagnetic Data: Case Study of Parts of Southern Bida Basin, Nigeria and the Surrounding Basement Rocks. Earth Science Research, 3 (2), 27-35.
[54]
Ojo, S. B. (1990). Origin of a major aeromagnetic anomaly in the Middle Niger Basin, Nigeria. Tectonophysics, 185 (1), 153-162.
[55]
Olasehinde, P. I., Pal, P. C. & Annor, A. E. (1990). Aeromagnetic anomalies and structural Lineaments in the Nigerian Basement Complex. Journal of African Earth Sciences, 1 (3&4), 351-355.
[56]
Nwankwo, L. I., Olasehinde, P. I., & Sunday, A. J. (2018). Fractal Revaluation of Bottom Depth of Magnetic Sources in Bida Basin, Nigeria from High-Resolution Aeromagnetic Data. J. Ind. Geophys. Union (March 2018), 22 (2), 143-150.
[57]
Khalid A., Elsayed Z. & AbdelHalim H. (2014). The Use of Landsat 8 OLI Image for the Delineation of Gossanic Ridges in the Red Sea Hills of NE Sudan. American Journal of Earth Sciences. Vol. 1, No. 3. pp. 62-67.
[58]
Pour, A. B., Hashim, M. & Marghany, M. (2014). Exploration of gold mineralization in a tropical region using Earth Observing-1 (EO1) and JERS-1 SAR data: a case study from Bau gold field, Sarawak, Malaysia. Arab J Geosci 7: 2393. https://doi.org/10.1007/s12517-013-0969-3.
[59]
Ducart, D. F., Silva, A. M., Toledo, C. L. B., & deAssis, L. M., 2016. Mapeamento de óxidos de ferro usando imagens Landsat-8/OLI e EO-1/Hyperion nos depósitos ferríferos da Serra Norte, Província Mineral de Carajás, Brasil. Brazilian Journal of Geology. 46, 331-349.
[60]
Dada, S. S. (2006). Proterozoic evolution of Nigeria. In Oshi O. (Eds.), The Basement Complex of Nigeria and its Mineral Resources (A tribute to Prof. M. A. Rahaman). (pp. 29-44). Akin Jinad and Co. Ibadan.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved