Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Coherent Manipulation of Spin Thermoelectric Dynamics in Graphene Nanodevice
Current Issue
Volume 2, 2015
Issue 4 (August)
Pages: 67-75   |   Vol. 2, No. 4, August 2015   |   Follow on         
Paper in PDF Downloads: 26   Since Aug. 28, 2015 Views: 1588   Since Aug. 28, 2015
Authors
[1]
Ahmed S. Abdelrazek, Faculty of Engineering, Kafr-Elsheikh University, Kafr-Elsheikh, Egypt.
[2]
Mohamed M. El-banna, Faculty of Engineering, Ain-Shams University, Cairo, Egypt.
[3]
Adel H. Phillips, Faculty of Engineering, Ain-Shams University, Cairo, Egypt.
Abstract
A spin-thermoelectric effect in graphene nanodevice is investigated. This nanodevice is modeled as ferromagnetic graphene/ superconducting graphene junction with Schottky barrier of delta-type at the interface of the junction. The thermoelectric parameters are expressed in terms of spin-dependent Andreev reflection and normal reflection which will be deduced by solving Dirac-Bogoliubov-deGennes equation in one dimension. Numerical calculations are performed for two different superconducting layers under the effects of both frequency of the induced ac-field and under the effect of magnetic field. Results show that the present nanodevice operates only in narrow band of THz frequencies. Also, the present results might indicate that the present nanodevice is stable under the effect of magnetic field, which must be needed for quantum information processing. The present research is very important in the field of spin caloritronics on the nanoscale systems and at low temperatures.
Keywords
Spin-caloritronics, Ferromagnetic Graphene, Superconducting Graphene, Thermopower (Seebeck Coefficient), Figure of Merit, Ac-field
Reference
[1]
V.V. Mitin, D. I. Sementsov and N. Z. Vagidov, Quantum Mechanics for Nanostructures, Cambridge University Press, The Edinburgh Building, Cambridge CB2 8RUCambridge, UK (2010).
[2]
I. Zutic, J. Fabian and S. Das Sarma, Spintronics fundamentals and applications, Rev. Mod. Phys. 76(2), 323 (2004).
[3]
A. Hirohata and K. Takanashi, Future perspectives for spintronic devices, J. Phys. D: Appl. Phys. 47, 193001 (2014).
[4]
K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa and E. Saitoh, Observation of the spin Seebeck effect. Nature 455, 778 (2008).
[5]
C. M. Jaworski, J. Yang, S. Mack, D. D. Awschalom, J. P. Heremans and R. C. Myers, Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nature Materials 9, 898 (2010).
[6]
K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Leda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa and E. Saitoh, Spin Seebeck insulator. Nature Materials 9, 894 (2010).
[7]
A. Slachter, F. L. Bakker, J.-P. Adam and B. J. van Wees, Thermally driven spin injection from a ferromagnet into a non-magnetic metal. Nature Phys. 6, 879(2010).
[8]
J.-C. Le Breton, S. Sharma, H. Saito, S. Yuasa, and R. Jansen, Thermal spin current from a ferromagnet to silicon by Seebeck spin tunneling, Nature 475, 82 (2011).
[9]
M. Hatami, and G. E. W. Bauer, Thermal spin-transfer torque in magnetoelectronic devices. Phys. Rev. Lett. 99, 066603 (2007).
[10]
H. Yu, S. Granville, D. P. Yu, and J.-Ph. Ansermet, Evidence for Thermal Spin-Transfer Torque. Phys. Rev. Lett. 104, 146601 (2010).
[11]
T. T. Heikkilä, M. Hatami, and G. E. W. Bauer, Spin heat accumulation and its relaxation in spin valves. Phys. Rev. B 81, 100408(R) (2010).
[12]
M. Hatami,G. E. W. Bauer, Q. Zhang and P. J. Kelly, Thermoelectric effects in magnetic nanostructures. Phys. Rev. B 79, 174426 (2009).
[13]
Slachter, A., Bakker, F. L. & van Wees, B. J. Thermal spin transport and spin-orbit interaction in ferromagnetic/non-magnetic metals, Phys. Rev. B 84, 174408 (2011).
[14]
G. E. W. Bauer, A. H. MacDonald, and S. Maekawa, Spin caloritronics. Solid State Commun. 150, 459(2010).
[15]
G. E. W. Bauer, E. Saitoh and B. J. van Wees, Spin caloritronics , Nature Materials, 11, 391, (2012).
[16]
V. Singh, D. Joung, L. Zhai, S. Das , S. I. Khondaker and S. Seal, Graphene based materials: past, present and future. Prog. Mater. Sci., 56,1178 (2011).
[17]
A. H. Castro Neto, F. Guinea, N. M. Peres, K. S. Novoselov, A. K. Geim AK, The electronic properties of graphene. Rev. Mod. Phys. 81,109 (2009).
[18]
M. Dragoman and D. Dragoman, Graphene-based quantum electronics, Prog. Quantum Electron. 33,165 (2009).
[19]
F.Schwierz, Graphene transistors. Nature Nanotech. 5,487(2010).
[20]
D. W. Boukhvalov ,M. I. Katsnelson, A. I. Lichtenstein, Hydrogen on graphene: electronic structure, total energy, structural distortions and magnetism from first-principles calculations, Phys Rev B, 77,405 (2008).
[21]
Ahmed S. Abdelrazek, Walid A.Zein and Adel H. Phillips, Probing Strain in Graphene using Goos-Hanchen Effect, J. Comput. and Theor. Nanosci.10, No.5, 1257 (2013).
[22]
Mina D. Asham, Walid A. Zein and Adel H. Phillips, Photo-induced thermo-spin ferromagnetic graphene field effect transistor, Open Science Journal of Modern Physics, 1 (5),31 (2014).
[23]
C.W.J. Beenakker, Specular Andreev reflection in graphene, Phys. Rev. Lett. 97, 067007, (2006).
[24]
Y. Asano, T. Yoshida, Y. Tanaka and A.A. Golubov, Electron transport in a ferromagnet superconductor junction on graphene, Phys. Rev. B,78, 014514 ( 2008).
[25]
C.W.J. Beenakker, Andreev reflection and Klein tunneling in graphene, Rev. Mod. Phys. 80, 1337, (2008).
[26]
Atef F. Amin, G. Li, Adel H. Phillips, and Ulrich Kleinekathofer, Coherent control of the spin current through a quantum dot, Europ. Phys. J.B, 68,103 (2009).
[27]
W. A. Zein, N. A. Ibrahim, and A. H. Phillips, Spin polarized transport in an AC-driven quantum curved nanowire, Physics Research International, 5 pages, article ID-505091, 2011.
[28]
M. J. M. de Jang, and C. W. J. Beenakker, Andreev-reflection in ferromagnetic superconductor junctions, Phys. Rev. Lett. 74, 1657 (1995).
[29]
Y. Yan, Q-F. Liang, H. Zhao and C-Q. Wu, Thermoelectric properties of hexangonal graphene quantum dots, Phys. Lett. A, 376, 1154,(2012).
[30]
H. Haugen, D. H. Hernando and A. Brataas, Spin transport in proximity-induced ferromagnetic graphene, Phys. Rev. B, 77, 115406 (2008).
[31]
H.B. Heersche, J.P. Herrero,J. B. Oostinga, L. M. K. Vandersypen and A. F. Morpurgo, Bipolar supercurrent in graphene, Nature (London), 446, 56 (2007).
[32]
S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Electronic transport in two-dimensional graphene, Rev. Mod. Phys. 83, 407 (2011).
[33]
M. N. Baibich, et al, Giant Magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472 (1988).
[34]
G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange, Phys. Rev. B 39, 4828 (1989).
[35]
N. Liebing, Tunneling magnetothermopower in magnetic tunnel junction nanopillars, Phys. Rev. Lett. 107, 177201 (2011).
[36]
W. Lin, M. Hehn, L. Chaput, B. Negulescu, S. Andrieu, F. Montaigne and S. Mangin, Giant spin-dependent thermoelectric effect in magnetic tunnel junctions. Nature Communications 3, 744 (2012).
[37]
G. I.Oya, E. J. Saur, Preparation of Nb3Ge films by chemical transport reaction and the critical properties, J. Low Temperature Phys.34 (5-4), 569 (1979).
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved