Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
A DFT Analysis of the Inhibition of Carbonic Anhydrase Isoforms I, II, IX and XII by a Series of Benzenesulfonamides and Tetrafluorobenzenesulfonamides
Current Issue
Volume 2, 2015
Issue 3 (June)
Pages: 68-82   |   Vol. 2, No. 3, June 2015   |   Follow on         
Paper in PDF Downloads: 39   Since Aug. 28, 2015 Views: 1950   Since Aug. 28, 2015
Authors
[1]
Juan S. Gómez-Jeria, Quantum Pharmacology Unit, Department of Chemistry, Faculty of Sciences, University of Chile, Santiago, Chile.
[2]
Andrés Robles-Navarro, Quantum Pharmacology Unit, Department of Chemistry, Faculty of Sciences, University of Chile, Santiago, Chile.
Abstract
We performed an analysis of the relationships between the electronic structure and the inhibition constants of a group of benzenesulfonamides and tetrafluoro-benzenesulfonamides against four isoforms of human carbonic anhydrase. The electronic structure of all molecules was calculated within the Density Functional Theory at the B3LYP/6-31g(d,p) level with full geometry optimization. For each isoform linear multiple regression analysis techniques were employed to find the best relationship between binding affinity and local atomic reactivity indices belonging to a common skeleton. We found statistically significant results for all isoforms. The corresponding partial inhibition pharmacophores suggest that a hydrogen bond seems to be a common feature. The inhibitory processes seem to be mainly orbital-controlled.
Keywords
Carbonic Anhydrase, QSAR, DFT, Benzenesulfonamides, Tetrafluoro-Benzenesulfonamides, hCA Isoform I, hCA Isoform II, hCA Isoform IX, hCA Isoform XII
Reference
[1]
S. C. Frost; R. McKenna. Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications; Springer: Dordrecht, 2014.
[2]
J. Pastorek; S. Pastorekova. Hypoxia-induced carbonic anhydrase IX as a target for cancer therapy: From biology to clinical use. Sem. Canc. Biol. 2015, 31, 52-64.
[3]
R. Talar-Wojnarowska; A. Gąsiorowska; M. Olakowski; D. Dranka-Bojarowska; P. Lampe; J. Śmigielski; M. Kujawiak; J. Grzegorczyk; E. Małecka-Panas. Utility of serum IgG, IgG4 and carbonic anhydrase II antibodies in distinguishing autoimmune pancreatitis from pancreatic cancer and chronic pancreatitis. Adv. Med. Sci. 2014, 59, 288-292.
[4]
M. Takacova; P. Bullova; V. Simko; L. Skvarkova; M. Poturnajova; L. Feketeova; P. Babal; A. J. Kivela; T. Kuopio; J. Kopacek; J. Pastorek; S. Parkkila; S. Pastorekova. Expression Pattern of Carbonic Anhydrase IX in Medullary Thyroid Carcinoma Supports a Role for RET-Mediated Activation of the HIF Pathway. Amer. J. Pathol. 2014, 184, 953-965.
[5]
J. Lau; J. Pan; Z. Zhang; N. Hundal-Jabal; Z. Liu; F. Bénard; K.-S. Lin. Synthesis and evaluation of 18F-labeled tertiary benzenesulfonamides for imaging carbonic anhydrase IX expression in tumours with positron emission tomography. Biorg. Med. Chem. Lett. 2014, 24, 3064-3068.
[6]
M. Furjelová; M. Kovalská; K. Jurková; J. Horáček; T. Carbolová; M. Adamkov. Carbonic anhydrase IX: A promising diagnostic and prognostic biomarker in breast carcinoma. Acta Histochem. 2014, 116, 89-93.
[7]
Y. Mikami; S. Minamiguchi; N. Teramoto; M. Nagura; H. Haga; I. Konishi. Carbonic anhydrase type IX expression in lobular endocervical glandular hyperplasia and gastric-type adenocarcinoma of the uterine cervix. Pathol. Res. Pract. 2013, 209, 173-178.
[8]
N. Lounnas; C. Rosilio; M. Nebout; D. Mary; E. Griessinger; Z. Neffati; J. Chiche; H. Spits; T. J. Hagenbeek; V. Asnafi; S.-A. Poulsen; C. T. Supuran; J.-F. Peyron; V. Imbert. Pharmacological inhibition of carbonic anhydrase XII interferes with cell proliferation and induces cell apoptosis in T-cell lymphomas. Cancer Lett. 2013, 333, 76-88.
[9]
F. E. Lock; P. C. McDonald; Y. Lou; I. Serrano; S. C. Chafe; C. Ostlund; S. Aparicio; J. Y. Winum; C. T. Supuran; S. Dedhar. Targeting carbonic anhydrase IX depletes breast cancer stem cells within the hypoxic niche. Oncogene 2013, 32, 5210-5219.
[10]
A. J. Kivelä; A. Knuuttila; J. Räsänen; E. Sihvo; K. Salmenkivi; J. Saarnio; S. Pastorekova; J. Pastorek; A. Waheed; W. S. Sly; J. A. Salo; S. Parkkila. Carbonic anhydrase IX in malignant pleural mesotheliomas: A potential target for anti-cancer therapy. Bioorg. Med. Chem. 2013, 21, 1483-1488.
[11]
M. Imtaiyaz Hassan; B. Shajee; A. Waheed; F. Ahmad; W. S. Sly. Structure, function and applications of carbonic anhydrase isozymes. Bioorg. Med. Chem. 2013, 21, 1570-1582.
[12]
J. Rubio-Briones; A. Calatrava; A. Fernández-Serra; R. Ramos Ruiz; I. Iborra; Z. García-Casado; L. Rubio; M. Trassierra; A. Collado; J. Casanova; A. Gómez-Ferrer; E. Solsona; J. A. López-Guerrero. Immunohistochemical expression of microvascular density and carbonic anhydrase IX in renal carcinoma. Relation to histological type and tumoral progression. Actas Urol. Españ. 2011, 35, 80-86.
[13]
M. T. Murri-Plesko; A. Hulikova; E. Oosterwijk; A. M. Scott; A. Zortea; A. L. Harris; G. Ritter; L. Old; S. Bauer; P. Swietach; C. Renner. Antibody inhibiting enzymatic activity of tumour-associated carbonic anhydrase isoform IX. Eur. J. Pharmacol. 2011, 657, 173-183.
[14]
I. Elder; C. Tu; L.-J. Ming; R. McKenna; D. N. Silverman. Proton transfer from exogenous donors in catalysis by human carbonic anhydrase II. Arch. Biochem. Bioph. 2005, 437, 106-114.
[15]
T. Dorai; I. S. Sawczuk; J. Pastorek; P. H. Wiernik; J. P. Dutcher. The role of carbonic anhydrase IX overexpression in kidney cancer. Eur. J. Canc. 2005, 41, 2935-2947.
[16]
E. Švastová; A. Hulı́ková; M. Rafajová; M. Zat'ovičová; A. Gibadulinová; A. Casini; A. Cecchi; A. Scozzafava; C. T. Supuran; J. r. Pastorek; S. Pastoreková. Hypoxia activates the capacity of tumor-associated carbonic anhydrase IX to acidify extracellular pH. FEBS Lett. 2004, 577, 439-445.
[17]
K. M. Merz. Carbon dioxide binding to human carbonic anhydrase II. J. Am. Chem. Soc. 1991, 113, 406-411.
[18]
S. Singh. Computational design and chemometric QSAR modeling of Plasmodium falciparum carbonic anhydrase inhibitors. Biorg. Med. Chem. Lett. 2015, 25, 133-141.
[19]
Q. Huang; E. Y. Rui; M. Cobbs; D. M. Dinh; H. J. Gukasyan; J. A. Lafontaine; S. Mehta; B. D. Patterson; D. A. Rewolinski; P. F. Richardson; M. P. Edwards. Design, Synthesis, and Evaluation of NO-Donor Containing Carbonic Anhydrase Inhibitors To Lower Intraocular Pressure. J. Med. Chem. 2015.
[20]
B. Żołnowska; J. Sławiński; A. Pogorzelska; J. Chojnacki; D. Vullo; C. T. Supuran. Carbonic anhydrase inhibitors. Synthesis, and molecular structure of novel series N-substituted N′-(2-arylmethylthio-4-chloro-5-methylbenzenesulfonyl)guanidines and their inhibition of human cytosolic isozymes I and II and the transmembrane tumor-associated isozymes IX and XII. Eur. J. Med. Chem. 2014, 71, 135-147.
[21]
S. Zaib; A. Saeed; K. Stolte; U. Flörke; M. Shahid; J. Iqbal. New aminobenzenesulfonamide–thiourea conjugates: Synthesis and carbonic anhydrase inhibition and docking studies. Eur. J. Med. Chem. 2014, 78, 140-150.
[22]
M. Tauro; F. Loiodice; M. Ceruso; C. T. Supuran; P. Tortorella. Arylamino bisphosphonates: Potent and selective inhibitors of the tumor-associated carbonic anhydrase XII. Biorg. Med. Chem. Lett. 2014, 24, 1941-1943.
[23]
J. Sławiński; A. Pogorzelska; B. Żołnowska; K. Brożewicz; D. Vullo; C. T. Supuran. Carbonic anhydrase inhibitors. Synthesis of a novel series of 5-substituted 2,4-dichlorobenzenesulfonamides and their inhibition of human cytosolic isozymes I and II and the transmembrane tumor-associated isozymes IX and XII. Eur. J. Med. Chem. 2014, 82, 47-55.
[24]
J. Sławiński; Z. Brzozowski; B. Żołnowska; K. Szafrański; A. Pogorzelska; D. Vullo; C. T. Supuran. Synthesis of a new series of N4-substituted 4-(2-aminoethyl)benzenesulfonamides and their inhibitory effect on human carbonic anhydrase cytosolic isozymes I and II and transmembrane tumor-associated isozymes IX and XII. Eur. J. Med. Chem. 2014, 84, 59-67.
[25]
SitaRam; M. Ceruso; P. Khloya; C. T. Supuran; P. K. Sharma. 4-Functionalized 1,3-diarylpyrazoles bearing 6-aminosulfonylbenzothiazole moiety as potent inhibitors of carbonic anhydrase isoforms hCA I, II, IX and XII. Bioorg. Med. Chem. 2014, 22, 6945-6952.
[26]
SitaRam; G. Celik; P. Khloya; D. Vullo; C. T. Supuran; P. K. Sharma. Benzenesulfonamide bearing 1,2,4-triazole scaffolds as potent inhibitors of tumor associated carbonic anhydrase isoforms hCA IX and hCA XII. Bioorg. Med. Chem. 2014, 22, 1873-1882.
[27]
K. K. Sethi; S. M. Verma; M. Tanç; G. Purper; G. Calafato; F. Carta; C. T. Supuran. Carbonic anhydrase inhibitors: Synthesis and inhibition of the human carbonic anhydrase isoforms I, II, IX and XII with benzene sulfonamides incorporating 4- and 3-nitrophthalimide moieties. Bioorg. Med. Chem. 2014, 22, 1586-1595.
[28]
B. Sarikaya; M. Ceruso; F. Carta; C. T. Supuran. Inhibition of carbonic anhydrase isoforms I, II, IX and XII with novel Schiff bases: Identification of selective inhibitors for the tumor-associated isoforms over the cytosolic ones. Bioorg. Med. Chem. 2014, 22, 5883-5890.
[29]
M.-C. Saada; D. Vullo; J.-L. Montero; A. Scozzafava; C. T. Supuran; J.-Y. Winum. Mono- and di-halogenated histamine, histidine and carnosine derivatives are potent carbonic anhydrase I, II, VII, XII and XIV activators. Bioorg. Med. Chem. 2014, 22, 4752-4758.
[30]
J. Pichake; P. S. Kharkar; M. Ceruso; C. T. Supuran; M. P. Toraskar. Carbonic Anhydrase Inhibitors: Design, Synthesis, and Biological Evaluation of Novel Sulfonyl Semicarbazide Derivatives. ACS Med. Chem. Lett. 2014, 5, 793-796.
[31]
N. Pala; L. Micheletto; M. Sechi; M. Aggarwal; F. Carta; R. McKenna; C. T. Supuran. Carbonic Anhydrase Inhibition with Benzenesulfonamides and Tetrafluorobenzenesulfonamides Obtained via Click Chemistry. ACS Med. Chem. Lett. 2014, 5, 927-930.
[32]
G. Nasr; A. Cristian; M. Barboiu; D. Vullo; J.-Y. Winum; C. T. Supuran. Carbonic anhydrase inhibitors. Inhibition of human cytosolic isoforms I and II with (reduced) Schiff’s bases incorporating sulfonamide, carboxylate and carboxymethyl moieties. Bioorg. Med. Chem. 2014, 22, 2867-2874.
[33]
M. Mojzych; A. Bielawska; K. Bielawski; M. Ceruso; C. T. Supuran. Pyrazolo[4,3-e][1,2,4]triazine sulfonamides as carbonic anhydrase inhibitors with antitumor activity. Bioorg. Med. Chem. 2014, 22, 2643-2647.
[34]
P. Khloya; G. Celik; SitaRam; D. Vullo; C. T. Supuran; P. K. Sharma. 4-Functionalized 1,3-diarylpyrazoles bearing benzenesulfonamide moiety as selective potent inhibitors of the tumor associated carbonic anhydrase isoforms IX and XII. Eur. J. Med. Chem. 2014, 76, 284-290.
[35]
L. Kelebekli; N. Balcı; E. Şahin. Stereospecific synthesis of highly substituted novel carbasugar as carbonic anhydrase inhibitors: decahydronaphthalene-1,2,3,4,5,6,7-heptol. Tetrahedron 2014, 70, 5175-5181.
[36]
A. Grandane; M. Tanc; R. Zalubovskis; C. T. Supuran. Synthesis of 6-tetrazolyl-substituted sulfocoumarins acting as highly potent and selective inhibitors of the tumor-associated carbonic anhydrase isoforms IX and XII. Bioorg. Med. Chem. 2014, 22, 1522-1528.
[37]
M. M. Ghorab; M. Ceruso; M. S. Alsaid; Y. M. Nissan; R. K. Arafa; C. T. Supuran. Novel sulfonamides bearing pyrrole and pyrrolopyrimidine moieties as carbonic anhydrase inhibitors: Synthesis, cytotoxic activity and molecular modeling. Eur. J. Med. Chem. 2014, 87, 186-196.
[38]
M. M. Ghorab; M. S. Alsaid; M. Ceruso; Y. M. Nissan; C. T. Supuran. Carbonic anhydrase inhibitors: Synthesis, molecular docking, cytotoxic and inhibition of the human carbonic anhydrase isoforms I, II, IX, XII with novel benzenesulfonamides incorporating pyrrole, pyrrolopyrimidine and fused pyrrolopyrimidine moieties. Bioorg. Med. Chem. 2014, 22, 3684-3695.
[39]
L. De Luca; S. Ferro; F. M. Damiano; C. T. Supuran; D. Vullo; A. Chimirri; R. Gitto. Structure-based screening for the discovery of new carbonic anhydrase VII inhibitors. Eur. J. Med. Chem. 2014, 71, 105-111.
[40]
M. D’Ascenzio; S. Carradori; C. De Monte; D. Secci; M. Ceruso; C. T. Supuran. Design, synthesis and evaluation of N-substituted saccharin derivatives as selective inhibitors of tumor-associated carbonic anhydrase XII. Bioorg. Med. Chem. 2014, 22, 1821-1831.
[41]
C. Congiu; V. Onnis; G. Balboni; C. T. Supuran. Synthesis and carbonic anhydrase I, II, IX and XII inhibition studies of 4-N,N-disubstituted sulfanilamides incorporating 4,4,4-trifluoro-3-oxo-but-1-enyl, phenacylthiourea and imidazol-2(3H)-one/thione moieties. Biorg. Med. Chem. Lett. 2014, 24, 1776-1779.
[42]
S. Alyar; Ş. Adem. Synthesis, characterization, antimicrobial activity and carbonic anhydrase enzyme inhibitor effects of salicilaldehyde-N-methyl p-toluenesulfonylhydrazone and its Palladium(II), Cobalt(II) complexes. Spectrochim. Acta A: Mol. Biomol. Spectr. 2014, 131, 294-302.
[43]
L. Wang; C. Yang; W. Lu; L. Liu; R. Gao; S. Liao; Z. Zhao; L. Zhu; Y. Xu; H. Li; J. Huang; W. Zhu. Discovery of new potent inhibitors for carbonic anhydrase IX by structure-based virtual screening. Biorg. Med. Chem. Lett. 2013, 23, 3496-3499.
[44]
R. Ulus; İ. Yeşildağ; M. Tanç; M. Bülbül; M. Kaya; C. T. Supuran. Synthesis of novel acridine and bis acridine sulfonamides with effective inhibitory activity against the cytosolic carbonic anhydrase isoforms II and VII. Bioorg. Med. Chem. 2013, 21, 5799-5805.
[45]
L. Tarko; C. T. Supuran. QSAR studies of sulfamate and sulfamide inhibitors targeting human carbonic anhydrase isozymes I, II, IX and XII. Bioorg. Med. Chem. 2013, 21, 1404-1409.
[46]
M. Tanc; F. Carta; M. Bozdag; A. Scozzafava; C. T. Supuran. 7-Substituted-sulfocoumarins are isoform-selective, potent carbonic anhydrase II inhibitors. Bioorg. Med. Chem. 2013, 21, 4502-4510.
[47]
O. Talaz; H. Çavdar; S. Durdagi; H. Azak; D. Ekinci. Synthesis of 1,4-bis(indolin-1-ylmethyl)benzene derivatives and their structure–activity relationships for the interaction of human carbonic anhydrase isoforms I and II. Bioorg. Med. Chem. 2013, 21, 1477-1482.
[48]
S. K. Suthar; S. Bansal; S. Lohan; V. Modak; A. Chaudhary; A. Tiwari. Design and synthesis of novel 4-(4-oxo-2-arylthiazolidin-3-yl)benzenesulfonamides as selective inhibitors of carbonic anhydrase IX over I and II with potential anticancer activity. Eur. J. Med. Chem. 2013, 66, 372-379.
[49]
K. K. Sethi; D. Vullo; S. M. Verma; M. Tanç; F. Carta; C. T. Supuran. Carbonic anhydrase inhibitors: Synthesis and inhibition of the human carbonic anhydrase isoforms I, II, VII, IX and XII with benzene sulfonamides incorporating 4,5,6,7-tetrabromophthalimide moiety. Bioorg. Med. Chem. 2013, 21, 5973-5982.
[50]
T. Rogez-Florent; S. Meignan; C. Foulon; P. Six; A. Gros; C. Bal-Mahieu; C. T. Supuran; A. Scozzafava; R. Frédérick; B. Masereel; P. Depreux; A. Lansiaux; J.-F. Goossens; S. Gluszok; L. Goossens. New selective carbonic anhydrase IX inhibitors: Synthesis and pharmacological evaluation of diarylpyrazole-benzenesulfonamides. Bioorg. Med. Chem. 2013, 21, 1451-1464.
[51]
Ö. Güzel-Akdemir; A. Akdemir; S. Isik; D. Vullo; C. T. Supuran. o-Benzenedisulfonimido–sulfonamides are potent inhibitors of the tumor-associated carbonic anhydrase isoforms CA IX and CA XII. Bioorg. Med. Chem. 2013, 21, 1386-1391.
[52]
R. Gao; S. Liao; C. Zhang; W. Zhu; L. Wang; J. Huang; Z. Zhao; H. Li; X. Qian; Y. Xu. Optimization of heterocyclic substituted benzenesulfonamides as novel carbonic anhydrase IX inhibitors and their structure activity relationship. Eur. J. Med. Chem. 2013, 62, 597-604.
[53]
M. Ceruso; D. Vullo; A. Scozzafava; C. T. Supuran. Inhibition of human carbonic anhydrase isoforms I–XIV with sulfonamides incorporating fluorine and 1,3,5-triazine moieties. Bioorg. Med. Chem. 2013, 21, 6929-6936.
[54]
F. Carta; D. Vullo; A. Maresca; A. Scozzafava; C. T. Supuran. Mono-/dihydroxybenzoic acid esters and phenol pyridinium derivatives as inhibitors of the mammalian carbonic anhydrase isoforms I, II, VII, IX, XII and XIV. Bioorg. Med. Chem. 2013, 21, 1564-1569.
[55]
S. Biswas; F. Carta; A. Scozzafava; R. McKenna; C. T. Supuran. Structural effect of phenyl ring compared to thiadiazole based adamantyl-sulfonamides on carbonic anhydrase inhibition. Bioorg. Med. Chem. 2013, 21, 2314-2318.
[56]
K. Aksu; M. Nar; M. Tanc; D. Vullo; İ. Gülçin; S. Göksu; F. Tümer; C. T. Supuran. Synthesis and carbonic anhydrase inhibitory properties of sulfamides structurally related to dopamine. Bioorg. Med. Chem. 2013, 21, 2925-2931.
[57]
A. Akıncıoğlu; Y. Akbaba; H. Göçer; S. Göksu; İ. Gülçin; C. T. Supuran. Novel sulfamides as potential carbonic anhydrase isoenzymes inhibitors. Bioorg. Med. Chem. 2013, 21, 1379-1385.
[58]
A. Akdemir; Ö. Güzel-Akdemir; A. Scozzafava; C. Capasso; C. T. Supuran. Inhibition of tumor-associated human carbonic anhydrase isozymes IX and XII by a new class of substituted-phenylacetamido aromatic sulfonamides. Bioorg. Med. Chem. 2013, 21, 5228-5232.
[59]
J. S. Gómez-Jeria; A. Robles-Navarro. The different modes of docking of a series of benzenesulfonamides and tetrafluorobenzenesulfonamides to the carbonic anhydrase isoform II. Der Pharma Chem. 2015, 7, 230-241.
[60]
J. S. Gómez-Jeria. Elements of Molecular Electronic Pharmacology (in Spanish); 1st ed.; Ediciones Sokar: Santiago de Chile, 2013.
[61]
T. Bruna-Larenas; J. S. Gómez-Jeria. A DFT and Semiempirical Model-Based Study of Opioid Receptor Affinity and Selectivity in a Group of Molecules with a Morphine Structural Core. Int. J. Med. Chem. 2012, 2012 Article ID 682495, 1-16.
[62]
J. S. Gómez Jeria. La Pharmacologie Quantique. Boll. Chim. Farmac. 1982, 121, 619-625.
[63]
J. S. Gómez-Jeria. On some problems in quantum pharmacology I. The partition functions. Int. J. Quant. Chem. 1983, 23, 1969-1972.
[64]
J. S. Gómez-Jeria. In Molecules in Physics, Chemistry, and Biology; Maruani, J., Ed.; Springer Netherlands: 1989; Vol. 4, p 215-231.
[65]
J. S. Gómez-Jeria; M. Ojeda-Vergara. Parametrization of the orientational effects in the drug-receptor interaction. J. Chil. Chem. Soc. 2003, 48, 119-124.
[66]
J. S. Gómez-Jeria. A New Set of Local Reactivity Indices within the Hartree-Fock-Roothaan and Density Functional Theory Frameworks. Canad. Chem. Trans. 2013, 1, 25-55.
[67]
Y. C. Martin. Quantitative drug design: a critical introduction; M. Dekker: New York, 1978.
[68]
J. S. Gómez-Jeria; L. Espinoza. Quantum-chemical studies on acetylcholinesterasa inhibition. I. Carbamates (in Spanish). Bol. Soc. Chil. Quím. 1982, 27, 142-144.
[69]
J. S. Gómez-Jeria; D. Morales-Lagos. In QSAR in design of Bioactive Drugs; Kuchar, M., Ed.; Prous, J.R.: Barcelona, Spain, 1984, p 145-173.
[70]
J. S. Gómez-Jeria; D. R. Morales-Lagos. Quantum chemical approach to the relationship between molecular structure and serotonin receptor binding affinity. J. Pharm. Sci. 1984, 73, 1725-1728.
[71]
J. S. Gómez-Jeria; D. Morales-Lagos; J. I. Rodriguez-Gatica; J. C. Saavedra-Aguilar. Quantum-chemical study of the relation between electronic structure and pA2 in a series of 5-substituted tryptamines. Int. J. Quant. Chem. 1985, 28, 421-428.
[72]
J. S. Gómez-Jeria; P. Sotomayor. Quantum chemical study of electronic structure and receptor binding in opiates. J. Mol. Struct. (Theochem) 1988, 166, 493-498.
[73]
J. S. Gómez-Jeria; M. Ojeda-Vergara; C. Donoso-Espinoza. Quantum-chemical Structure-Activity Relationships in carbamate insecticides. Mol. Engn. 1995, 5, 391-401.
[74]
J. S. Gómez-Jeria; L. Lagos-Arancibia. Quantum-chemical structure-affinity studies on kynurenic acid derivatives as Gly/NMDA receptor ligands. Int. J. Quant. Chem. 1999, 71, 505-511.
[75]
J. S. Gómez-Jeria; L. Lagos-Arancibia; E. Sobarzo-Sánchez. Theoretical study of the opioid receptor selectivity of some 7-arylidenenaltrexones. Bol. Soc. Chil. Quím. 2003, 48, 61-66.
[76]
F. Soto-Morales; J. S. Gómez-Jeria. A theoretical study of the inhibition of wild-type and drug-resistant HTV-1 reverse transcriptase by some thiazolidenebenzenesulfonamide derivatives. J. Chil. Chem. Soc. 2007, 52, 1214-1219.
[77]
J. S. Gómez-Jeria. A DFT study of the relationships between electronic structure and peripheral benzodiazepine receptor affinity in a group of N,N-dialkyl-2- phenylindol-3-ylglyoxylamides (Erratum in: J. Chil. Chem. Soc., 55, 4, IX, 2010). J. Chil. Chem. Soc. 2010, 55, 381-384.
[78]
C. Barahona-Urbina; S. Nuñez-Gonzalez; J. S. Gómez-Jeria. Model-based quantum-chemical study of the uptake of some polychlorinated pollutant compounds by Zucchini subspecies. J. Chil. Chem. Soc. 2012, 57, 1497-1503.
[79]
D. A. Alarcón; F. Gatica-Díaz; J. S. Gómez-Jeria. Modeling the relationships between molecular structure and inhibition of virus-induced cytopathic efects. Anti-HIV and anti-H1N1 (Influenza) activities as examples. J. Chil. Chem. Soc. 2013, 58, 1651-1659.
[80]
J. S. Gómez-Jeria; M. Flores-Catalán. Quantum-chemical modeling of the relationships between molecular structure and in vitro multi-step, multimechanistic drug effects. HIV-1 replication inhibition and inhibition of cell proliferation as examples. Canad. Chem. Trans. 2013, 1, 215-237.
[81]
A. Paz de la Vega; D. A. Alarcón; J. S. Gómez-Jeria. Quantum Chemical Study of the Relationships between Electronic Structure and Pharmacokinetic Profile, Inhibitory Strength toward Hepatitis C virus NS5B Polymerase and HCV replicons of indole-based compounds. J. Chil. Chem. Soc. 2013, 58, 1842-1851.
[82]
I. Reyes-Díaz; J. S. Gómez-Jeria. Quantum-chemical modeling of the hepatitis C virus replicon inhibitory potency and cytotoxicity of some pyrido[2,3-d]pyrimidine analogues. J. Comput. Methods Drug Des. 2013, 3, 11-21.
[83]
F. Gatica-Díaz; J. S. Gómez-Jeria. A Theoretical Study of the Relationships between Electronic Structure and Cytotoxicity of a group of N2-alkylated Quaternary β-Carbolines against nine Tumoral Cell Lines. J. Comput. Methods Drug Des. 2014, 4, 79-120.
[84]
J. S. Gómez-Jeria. A theoretical study of the relationships between electronic structure and anti-inflammatory and anti-cancer activities of a series of 6,7-substituted-5,8-quinolinequinones. Int. Res. J. Pure App. Chem. 2014, 4, 270-291.
[85]
J. S. Gómez-Jeria. A quantum-chemical analysis of the relationships between hCB2 cannabinoid receptor binding affinity and electronic structure in a family of 4-oxo-1,4-dihydroquinoline-3-carboxamide derivatives. Der Pharm. Lett. 2014, 6., 95-104.
[86]
J. S. Gómez-Jeria. An Analysis of the Electronic Structure of an Imidazo[1,2-a]Pyrrolo[2,3-c]Pyridine series and their anti Bovine Viral Diarrhea Virus Activity. Brit. Microbiol. Res. J. 2014, 4, 968-987.
[87]
J. S. Gómez-Jeria. A quantum chemical analysis of the relationships between electronic structure, PAK1 inhibition and MEK phosphorylation in a series of 2-arylamino-4-aryl-pyrimidines. SOP Trans. Phys. Chem. 2014, 1, 10-28.
[88]
J. S. Gómez-Jeria. Toward Understanding the Inhibition of Vesicular Stomatitis Virus Replication in MDCK Cells by 4-Quinolinecarboxylic acid Analogues. A Density Functional Study. Der Pharma Chem. 2014, 6, 64-77.
[89]
J. S. Gómez-Jeria. A Quantum-Chemical approach toward an understanding of the Human Neutrophil Elastase inhibition by N-benzoylindazole derivatives. Res. J. Pharmac. Biol. Chem. Sci. 2014, 5, 2124-2142.
[90]
J. S. Gómez-Jeria. A Preliminary Formal Quantitative Structure-Activity Relationship Study of some 1,7-Bis-(amino alkyl)diazachrysene Derivatives as Inhibitors of Botulinum Neurotoxin Serotype A Light Chain and Three P. falciparum Malaria Strains. J. Comput. Methods Drug Des. 2014, 4, 32-44.
[91]
J. S. Gómez-Jeria. A DFT Study of the Inhibition of the Papain-like Protease (PLpro) from the SARS Coronavirus by a Group of 4-Piperidinecarboxamide Derivatives. Res. J. Pharmac. Biol. Chem. Sci. 2014, 5, 424-436.
[92]
J. S. Gómez-Jeria. A Note on the Relationships between Electronic Structure and Inhibition of Chikungunya Virus Replication by a group of [1,2,3]Triazolo[4,5-d]pyrimidin-7(6H)-ones Derivatives. J. Comput. Methods Drug Des. 2014, 4, 38-47.
[93]
J. S. Gómez-Jeria. A Density Functional Study of the Inhibition of the Anthrax Lethal Factor Toxin by Quinoline-based small Molecules related to Aminoquinuride (NSC 12155). Res. J. Pharmac. Biol. Chem. Sci. 2014, 5, 780-792.
[94]
J. S. Gómez-Jeria; J. Molina-Hidalgo. A Short Note on the Relationships between Electronic Structure and S-Nitrosoglutathione Reductase Inhibition by 3-[1-(4-carbamoylphenyl)-5-phenyl-1H-pyrrol-2-yl]propanoic acids. J. Comput. Methods Drug Des. 2014, 4, 1-9.
[95]
J. S. Gómez-Jeria; J. Valdebenito-Gamboa. A DFT study of the Relationships between Electronic Structure, Cyclin-dependent Kinases Inhibition and Anti-Proliferative action in a series of 2,4,5-trisubstituted Pyrimidines. Der Pharma Chem. 2014, 6, 383-406.
[96]
D. Muñoz-Gacitúa; J. S. Gómez-Jeria. Quantum-chemical study of the relationships between electronic structure and anti influenza activity. 1. The inhibition of cytophatic effects produced by the influenza A/Guangdong Luohu/219/2006 (H1N1) strain in MDCK cells by substituted bisaryl amide compounds. J. Comput. Methods Drug Des. 2014, 4, 33-47.
[97]
D. Muñoz-Gacitúa; J. S. Gómez-Jeria. Quantum-chemical study of the relationships between electronic structure and anti influenza activity. 2. The inhibition by 1H-1,2,3-triazole-4-carboxamide derivatives of the cytopathic effects produced by the influenza A/WSN/33 (H1N1) and A/HK/8/68 (H3N2) strains in MDCK cells. J. Comput. Methods Drug Des. 2014, 4, 48-63.
[98]
D. I. Pino-Ramírez; J. S. Gómez-Jeria. A Quantum-chemical study of the in vitro cytotoxicity of a series of (Z)-1-aryl-3-arylamino-2-propen-1-ones against human tumor DU145 and K562 cell lines. Amer. Chem. Sci. J. 2014, 4, 554-575.
[99]
F. Salgado-Valdés; J. S. Gómez-Jeria. A Theoretical Study of the Relationships between Electronic Structure and CB1 and CB2 Cannabinoid Receptor Binding Affinity in a Group of 1-Aryl-5-(1-H-pyrrol-1-yl)-1-H-pyrazole-3-carboxamides. J. Quant. Chem. 2014, 2014 Article ID 431432, 1-15.
[100]
R. Solís-Gutiérrez; J. S. Gómez-Jeria. A Density Functional Theory study of the relationships between electronic structure and metabotropic glutamate receptor subtype 5 affinity of 2-amino- and 2-halothiazole derivatives. Res. J. Pharmac. Biol. Chem. Sci. 2014, 5, 1401-1416.
[101]
J. S. Gómez-Jeria; A. Robles-Navarro. A theoretical study of the relationships between electronic structure and inhibition of tumor necrosis factor by cyclopentenone oximes. Res. J. Pharmac. Biol. Chem. Sci. 2015, 6, 1337-1351.
[102]
J. S. Gómez-Jeria; A. Robles-Navarro. A Density Functional Theory and Docking study of the Relationships between Electronic Structure and 5-HT2B Receptor Binding Affinity in N-Benzyl Phenethylamines. Der Pharma Chem. 2015, 7, 243-269.
[103]
J. S. Gómez-Jeria; A. Robles-Navarro. Quantum-chemical study of the cytotoxic activity of pyrimidine–benzimidazol hybrids against MCF-7, MGC-803, EC-9706 and SMMC-7721 human cancer cell lines. Res. J. Pharmac. Biol. Chem. Sci. 2015, 6, 755-783.
[104]
J. S. Gómez-Jeria; A. Robles-Navarro. A Quantum Chemical Analysis of the Inactivation Rate Constant of the BoNT/A LC Neurotoxin by some 1,4-Benzoquinone and 1,4-Naphthoquinone derivatives. J. Comput. Methods Drug Des. 2015, 5, 15-26.
[105]
J. S. Gómez-Jeria; A. Robles-Navarro. DFT and Docking Studies of the Relationships between Electronic Structure and 5-HT2A Receptor Binding Affinity in N-Benzylphenethylamines. Res. J. Pharmac. Biol. Chem. Sci. 2015, 6, 1811-1841.
[106]
J. S. Gómez-Jeria; A. Robles-Navarro. A Quantum Chemical Study of the Relationships between Electronic Structure and cloned rat 5-HT2C Receptor Binding Affinity in N‑Benzylphenethylamines. Res. J. Pharmac. Biol. Chem. Sci. 2015, 6, in press.
[107]
M. S. Leal; A. Robles-Navarro; J. S. Gómez-Jeria. A Density Functional Study of the Inhibition of Microsomal Prostaglandin E2 Synthase-1 by 2-aryl substituted quinazolin-4(3H)-one, pyrido[4,3-d]pyrimidin-4(3H)-one and pyrido[2,3-d]pyrimidin-4(3H)-one derivatives. Der Pharm. Lett. 2015, 7, 54-66.
[108]
M. J. Frisch; G. W. Trucks; H. B. Schlegel; G. E. Scuseria; M. A. Robb; J. R. Cheeseman; J. Montgomery, J.A.; T. Vreven; K. N. Kudin; J. C. Burant; J. M. Millam; S. S. Iyengar; J. Tomasi; V. Barone; B. Mennucci; M. Cossi; G. Scalmani; N. Rega, et al., G03 Rev. E.01 Gaussian: Pittsburgh, PA, USA, 2007.
[109]
J. S. Gómez-Jeria. D-CENT-QSAR 1.0. Santiago, Chile, 2014.
[110]
J. S. Gómez-Jeria. An empirical way to correct some drawbacks of Mulliken Population Analysis (Erratum in: J. Chil. Chem. Soc., 55, 4, IX, 2010). J. Chil. Chem. Soc. 2009, 54, 482-485.
[111]
Hypercube. Hyperchem 7.01. 419 Phillip St., Waterloo, Ontario, Canada, 2002.
[112]
Statsoft. Statistics 8. 2300 East 14 th St. Tulsa, OK 74104, USA, 1984-2007.
[113]
E. Joselevich. Electronic Structure and Chemical Reactivity of Carbon Nanotubes: A Chemist's View. ChemPhysChem 2004, 5, 619-624.
[114]
E. Joselevich. Chemistry and Electronics of Carbon Nanotubes Go Together. Ang. Chem. Int. Ed. 2004, 43, 2992-2994.
[115]
Accelrys Software Inc.; Discovery Studio Visualizer 4.1, San Diego, CA, USA, 2013.
[116]
R. D. Dennington; T. A. Keith; J. M. Millam. GaussViev 5.0.8, 340 Quinnipiac St., Bldg. 40, Wallingford, CT 06492, USA, 2000-2008.
[117]
Chemaxon. MarvinView 6.3.1; www.chemaxon.com: USA, 2014.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved