
Global Warming, Archaea and Viroid Induced Symbiotic Human Evolution - Metabolic Change – Metabolic Syndrome X

Ravikumar Kurup Parameswara Achutha Kurup

ISBN: 978-1-946898-06-7

- © 2017 Ravikumar Kurup. Licensee Open Science Publishers.
- © 2017 Parameswara Achutha Kurup. Licensee Open Science Publishers.

This work is distributed under the terms of the Creative Commons Attribution 3.0 Unported License

(http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Published in 2017 by Open Science Publishers
228 Park Ave., S#45956, New York, NY 10003, U.S.A.
http://www.openscienceonline.com

Contents

Chapter 1	The Endosymbiotic Archaea, Fructose Disease, Metabolic Syndrome X and Global Warming	1
Chapter 2	A Cholesterol and Actinide Dependent Shadow Biosphere of Archaea and Viroids in Metabolic Syndrome - Type 2 Diabetes Mellitus with Coronary Artery Disease and Stroke	37
Chapter 3	Archaeal Digoxin Mediated Model for Metabolic Syndrome X	49
Chapter 4	Archaeal Digoxin and Regulation of Body-Mass Index / Metabolic Pathways	65

The Endosymbiotic Archaea, Fructose Disease, Metabolic Syndrome X and Global Warming

Global warming induces endosymbiotic archaeal and RNA viroidal growth. The porphyrins form a template for the formation of RNA viroids, DNA viroids, prions, isoprenoids and polysaccharides. They can symbiose together to form primitive archaea. The archaea can further induce HIF alpha, aldose reductose and fructolysis resulting in further porphyrinogenesis and archaeal self replication. The primitive archaeal DNA is integrated along with RNA viroids which are converted to their corresponding DNA by the action of redox stress induced HERV reverse transcriptase into the human genome by the redox stress induced HERV integrase. The archaeal DNA sequences that are integrated into the human genome forms endogenous archaeal human genomic sequences akin to HERV sequences and can function as jumping genes regulating genomic DNA flexibility. The integrated endogenous genomic archaeal sequences can get expressed in the presence of redox stress forming endosymbiotic archaeal particles which can function as a new organelle called the archaeaons. The archaeaon can express the fructolytic pathway constituting an organelle called the fructosome, cholesterol catabolic pathway and digoxin synthetic forming an organelle called the steroidelle, the shikimic acid pathway forming an organelle called the neurotransminoid, antioxidant vitamin E and vitamin C synthetic organelle called the vitaminocyte as well as the glycosaminoglycan synthetic organelle called glycosaminoglycoid. The archaea can secrete capsulated RNA viroidal particles which can function as blocking RNAs modulating cell metabolism and such archaeaon organelle are called viroidelle. The archaea suppresses pyruvate dehydrogenase and promotes fructolysis resulting in accumulation of pyruvate which enters the GABA shunt pathway producing succinyl CoA and glycine, the substrates for porphyrin synthesis. Porphyrin forms a template for the formation of RNA viroids, DNA viroids, prions and isoprenoids which can symbiose together to form an archaea. Thus endosymbiotic archaea have an abiogenic replication. The archaeaon concerned

with GABA shunt pathway and porphyrinogenesis are called porphyrinoids. The archaeaon colony forms a network with different areas showing differential specialization of function - fructosoids, steroidelle, vitaminocyte, viroidelle, neurotransminoid, porphyrinoids and glycosaminoglycoids. This forms a living organized structure within human cells and tissues regulating their function and reducing the human body to zombie working under the directions of the organized archaeal colony. The organized archaeal colony has abiogenetic replication and is eternal.

Global warming can lead to osmotic stress consequent to dehydration. The increase in actinidic archaeal growth leads to cholesterol catabolism and digoxin synthesis. Digoxin produces membrane sodium potassium ATPase inhibition and increase in intracellular calcium producing mitochondrial dysfunction. This results in oxidative stress. The oxidative stress and osmotic stress can induce the enzyme aldose reductase which converts glucose to fructose. Fructose has got a low km value for ketokinase as compared to glucose. Therefore fructose gets phosphorylated more to fructose phosphate and the cell is depleted of ATP. The cell depletion of ATP leads to oxidative stress and chronic inflammation consequent to induction of NFKB. Oxidative stress can open the mitochondrial PT pore producing release of cyto C and activation of the caspase cascade of cell death. The fructose phosphate can enter the pentose phosphate pathway synthesizing ribose and nucleic acid. The depletion of cellular ATP results in generation of AMP and ADP which are acted upon by deaminases causing hyperuricemia. Uric acid can produce endothelial dysfunction and vascular disease. Uric acid can also produce mitochondrial dysfunction. The fructose phosphate can enter the glucosamine pathway synthesizing GAG and producing mucopolysaccharide accumulation. Fructose can fructosylate proteins making them antigenic and producing an autoimmune response. This can lead to global warming related metabolic syndrome X.

The endosymbiotic actinidic archaea forms the basis of life and can be considered as the third element in the cell. It regulates the cell, the neuro-immune-endocrine system and the conscious / unconscious brain. The endosymbiotic actinidic archaea can be called as the elixir of life. A definite population of endosymbiotic actinidic archaea is required for the existence and survival of life. A higher density of endosymbiotic actinidic archaeal population can lead to human disease. Thus actinidic archaea are important for survival of human life and can be considered as crucial to it. Symbiosis by actinidic archaea is the basis of evolution of humans and primates. The increase in endosymbiotic archaeal growth can lead to the induction of homo neanderthalis. This endosymbiotic archaea induced neanderthalisation of the species leads to human disease like metabolic syndrome X, neurodegenerations, schizophrenia and autism, autoimmune disease and cancer. The reduction in endosymbiotic archaeal growth by a high fibre, high medium chain triglyceride and legume protein ketogenic diet, antibiotics from higher plants like Curcuma longa, Emblica officianalis. Allium sativum. Withania somnifera. Moringa pterygosperma and Zingeber officianalis and transplantation of colonic microflora from normal homo sapien population can deneanderthalisation of species and treatment of the above mentioned diseased states. The colonic microflora of neanderthalised diseased states like metabolic syndrome X, neurodegenerations, schizophrenia and autism, autoimmune disease and cancer when transferred to the normal homo sapien species leads to generation and induction of homo neanderthalis. Thus primate and human evolution is symbiotic event which can be induced the modulating symbiotic archaeal growth. Human populations can be divided into matrilineal Neanderthal population in South Indian Dravidians, Celts, Basques, Jews and Berbers and the Cro-Magnon population seen in Africa and Europe. The symbiotic archaeal colonization decides which species - Neanderthal or

Cro-Magnon to which the society belongs to. It is tempting to postulate symbiotic microflora and archaea determining the family behavior and traits as well as societal and caste behavior and traits. The cell has been postulated by Margulis to be a symbiotic association of bacteria and viruses. Similarly, the family, the caste, the community, nationalities and the species itself is determined by archaeal and other bacterial symbiosis.


Symbiosis by microorganisms especially archaea drives the evolution of the species. In such a case symbiosis can be induced by transfer of microflora symbionts and evolution induced. Endosymbiosis by archaea as well as archaeal symbionts in the gut can modulate the genotype, the phenotype, the social class and the racial group of the individual. The symbiotic archaea can have horizontal and vertical transmission. Endosymbiotic archaeal growth leads to neanderthalisation of the species. The neanderthalised species is matrilineal society and includes the Dravidians, the Celts, the Basques and the Berbers. The inhibition of the endosymbiotic archaeal growth leads to evolution of the homo sapiens. This includes the Africans, Aryan invaders of North India and the Aryan derived European population. Symbiosis mediated evolution depends on the gut flora and the diet. This has been demonstrated in the drosophila pseudoobscura. The drosophila mates only with other individuals eating the same diet. When the drosophila gut microflora is altered by feeding antibiotics they mate with other individuals eating different diets. The diet consumed by the drosophila regulates its gut microflora and mating habits. The combination of the human genome and the symbiotic microbial genome is called the hologenome. The hologenome especially its symbiotic microbial component drives human evolution as well as animal evolution. The evolutionary distance between species of wasp depends on the gut microflora. The human gut microflora regulates the endocrine, genetic and neuronal systems. Humans and primate evolution depends on endosymbiotic archaea and gut microflora. The

endosymbiotic archaeal growth determines the racial differences between the matrilineal Harappan / Dravidian societies and the patriarchal Aryan society. The matrilineal Harappan / Dravidian society was neanderthalic and had increased endosymbiotic archaeal growth. Endosymbiotic archaeal growth and neanderthalisation can lead to autoimmune disease, metabolic syndrome X, neurodegeneration, cancer, autism and schizophrenia. The Neanderthal gut flora and endosymbiotic archaea was determined by the non vegetarian ketogenic high fat high protein diet consumed by them in the Eurasian steppes. The homo sapiens including the classical Aryan tribes and African ate a high fibre diet and had lower archaeal growth both endosymbiotic and gut. The dietary fibre intake determines the microbial diversity of the gut. The high fibre intake is associated with increased generation of short chain fatty acids - butyric acid by the gut flora. Butyrate is a HDAC inhibitor and leads to increased generation and incorporation of endogenous retroviral sequences. The high dietary fibre intake related increased HERV sequences leads to increased synaptic connectivity and a dominant frontal cortex as seen in homo sapien species. The neanderthalic species consume a ketogenic non vegetarian high fat high protein low fibre diet. This leads to decreased generation of endogenous HERV sequences and reduced genomic flexibility in neanderthalic species. This produces smaller cerebral cortex and a dominant cerebellar cortex in the neanderthalic brain. The homo neanderthalic species by the low dietary fibre intake starve their microbial self. This leads to increased endosymbiotic and gut archaeal growth. The mucous membrane lining the gut becomes thinned out as the gut bacteria eats up the mucous lining of the gut. This results in leakage of endotoxin and archaea from the gut to the blood breaching the barrier and produces a chronic immunostimulatory inflammatory state which forms the basis of autoimmune disease, metabolic syndrome, neurodegeneration, oncogenic and psychiatric disorders. The Neanderthal species eat a low fibre diet and have a deficiency of

microbiota accessed carbohydrate generating short chain fatty acid. There is a deficiency of butyrate generated in the gut from the dietary fibre which can produce suppression of the chronic inflammatory process. The Neanderthals have got the fermentation by-product deficiency syndrome. The induction of neanderthalic species depends on the low fibre intake induced high archaeal density endosymbiotic and the gut microflora. The homo sapiens species consume a high fibre diet generating large amounts of short chain fatty acid butyrate which inhibits endosymbiotic and gut archaeal growth. The microbial self of the homo sapien species is more diverse than that of the neanderthalic species and the archaeal population density is less. This results in a protection against chronic inflammation and the induction of diseases like autoimmune disease, metabolic syndrome, neurodegeneration, oncogenic and psychiatric disorders. The homo sapien species have a higher intake of dietary fibre contributing to around 40 g/day and a diverse microbial gut flora with less of archaeal population density. The butyrate generated from dietary fibre produces an immunosuppressive state. Thus the symbiotic microflora with less of archaeal density induces a homo sapien species. This can be demonstrated by experimental induction of evolution. A high fibre high MCT diet as well as antibiotics derived from higher plants and fecal microbiota transfer from sapien species can inhibit the Neanderthal metabolonomics and phenotype and induce the evolution of homo sapiens. A low fibre high fat high protein diet as well as fecal microbiota transfer from the Neanderthal species can produce Neanderthal metabolonomics and phenotype inducing the evolution of homo neanderthalis. Transfer of colonic microflora predominantly archaea and modulation of endosymbiotic archaea by a paleo diet and antibiotics from higher plants can lead to interconversion of human species between homo neanderthalis and homo sapiens. The hologenome especially the microbial flora endosymbiotic/gut drives human and animal evolution and can

experimentally induced. Symbiotic microflora drives evolution. Every animal, every human species, different communities, different races and different caste have their signature endosymbiotic and gut microflora which can be transmitted vertically and horizontally. Thus symbiosis drives human and animal evolution.

This can be interpreted on the basis of Villarreal hypothesis of group identity and cooperativity of RNA collectives. Archaeal symbiosis in the gut and in the tissue spaces determines speciation of human beings as homo sapiens and homo neanderthalis. The endosymbiotic archaea can secrete RNA viroids and viruses and there is a viroid-archaeal host relationship between the two. A dynamic state of virus lysis and persistence can occur in archaea suggesting that viral addiction can occur in archaea. The RNA viroids in the archaea coordinate their behavior by information exchange, modulation and innovation generating new sequence based content. This occurs due to a phenomenon of symbiosis in contrast to the concept of survival of the fittest. The generation of new RNA viroidal sequences is a result of practical competence of living agents to generate new sequences by symbiosis and sharing. This represents highly productive RNA viroidal quasi-species consortia for the evolution, conservation and plasticity of genomic environments. The behavioural motives of the RNA are single stem loop structures. They have self folding and group building capabilities depending upon functional needs. The evolution process depends upon what Villareal calls RNA stem loop consortia. The whole entity can function only if participatory groups of RNA viroids can get their function coordinated. There is competent denovo generation of new sequences by cooperative action and not by competition. These RNA viroidal group consortia can contribute to the host identity, group identity and group immunity. The term used for this is RNA viroidal sociological behavior. The RNA viroids can build groups that invade the archaea and compete as a group for limited resources such host genomes. A key behavioural motif is able to integrate a persistent life

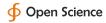

style into the archaeal colony with the addiction module forming competing viroidal groups that are counter balancing each other together with the archaeal/host immune system. This leads to creation of an identity for the archaeal colony and the homo neanderthalis host. Viroids can kill their host and also colonize their host without disease and protect the host from similar viruses and viroids. Together with lysis and protection we see a viroid colonized host that is both symbiotic and innovative acquiring new competent codes. Thus the viroid-host relationship is a pervasive, ancient force in the origin and evolution of life. Cumulative evolution at the level of RNA viroids is like a ratchet effect used for transmission of cultural memes. This learning accumulates so that every new generation must not repeat all innovative thoughts and techniques. Quasi-species of RNA viroids are cooperative and exclusive of other quasi-species. They have group recognition differentiating self-groups and non-self-groups allowing for quasi-species to promote the emergence of group identity. With group identity via counter related addiction modules two opposing components must be present and work coherently and define the group as a whole. Biological identity is constituted by dynamic interaction of cooperative groups. Virus addiction module is an essential strategy for existence of life in the virosphere. Viruses are transmissible and can persist in specific host population leading to a form of group immunity / identity since identical but uncolonized host population remains susceptible to a killing action of lytic viruses. In this way we see that viruses are necessary providing opposing functions for addiction (persistence/protection and lytic/killing). Viroids can function as consortia, an essential interacting group and provide a mechanism from which consortial function could emerge in the origin of protobiotic life. Genetic parasites can act as a group (qs-c). But for this group to be coherent they must attain group identity and this is typically via an addiction strategy. Antiviral and proviral system in the archaea will themselves emerge in the host

from virus derived information. The archaeal viruses themselves provide the critical function required for antiviral defence. The opposing functions are the basis of addiction modules. Thus the emergence of group identity becomes an essential and early event in the emergence of life. This is coherent to the basically group behavior of RNA viroids in archaea. This group selection and group identity are needed to create information coherence and network formation and to establish a system of communication - code competent interactions. This identity serves as information also for the ones that do not share this identity. This is the beginning of self/non-self differentiating capability. In this way viroids promote the emergence of group identity in archaeal colonies and host humans. The archaeal colony identity depends upon the colonizing set of RNA viroids producing a coherent network that is inclusive opposing functions and favours the persistence of parasite derived new information. On the basis of population-based functions of RNA DNA can be considered as a habitat for consortia RNA. Thus RNA viroids of the archaea are involved in complex multicellular identity. This is called as the Gangen hypothesis by Villarreal. The Gangen describes the emergence of commonly shared code use, group membership and collective living function of RNA viroids. Communication is a code depended interaction and transmission of infectious code defines the origin of the virosphere. This issue refers to the idea of collective of RNA viroids with inherent toxic and antitoxic features should be able to transmit or communicate these agents and their features to a nearby competing population. It strongly favours the survival of RNA viroidal population with compatible addiction modules that will inhibit agent toxicity and allow persistence of new agents. This is thus the survival of the persistently colonized set which is an inherently symbiotic and consortial process. It also promotes increasing complexity and identity/immunity of the host collective via a new agent colonization, and stable addition. Thus the transmission of RNA

agents attains both communication and recognition of group membership. In this way the emergence of the virosphere must had been an early event in the origin of life and group identity. Viruses and viroids are genetic parasites and the most abundant living entities on earth. The virosphere is a network of infectious genetic agents. Evolution, conservation and plasticity of genetic identities are the result of cooperative consortia of RNA viroids that are competent to communicate. Thus the archaeal viroidal consortia can symbiotically share and communicate producing new sequences and give an identity to the archaeal colony. The low fibre diet and extreme temperatures of the Eurasian steppes leads to archaeal multiplication and induction of the homo neanderthalis species. The archaeal colony's characteristics are determined by the cooperative consortia of RNA viroids in the archaea and the archaeal colony identity determines the homo neanderthalis identity. Thus the archaeal colonies with their quasi-species consortia of RNA viroids determine the homo neanderthalis identity. The new sequence generation by the RNA viroidal consortia's symbiotic sharing character contributes to the diversity in the behavior and creativity of the homo neanderthalis population. The archaeal RNA viruses and viroids and the archaeal colonies themselves protect the homo population from retroviral infections. neanderthalis Thus the homo neanderthalis population is retroviral resistant and the quasi-species consortia of archaea and archaeal viroids gives them a group identity as retroviral resistant. Thus the quasi-species consortia of archaea and RNA viroids give homo neanderthalis colonies their identity and idea of self. The homo neanderthalis is resistant to retroviral infection like the Australian aboriginals and the endogenous retroviral sequences in the Neanderthal genome are limited. This leads to lack of plasticity and dynamicity of the human genome and the cerebral cortex in ill-developed with a dominant impulsive cerebellar cortex in the homo neanderthalis population. This produces the impulsive creative surrealistic



spiritual neanderthalic brain. As the extreme of temperature goes off and the ice age ends the archaeal population density also comes down. This also can result from the consumption of a high fibre diet in the African continent. The high fibre diet digested by clostridial clusters in the colon promotes butyrate synthesis and butyrate will induce HDAC inhibition and expression of retroviral sequences in the primate genome. This leads to increase in endogenous retroviral sequences in the human genome, increasing genomic dynamicity and the evolution of complicated cerebral cortex dominant brain with its complex synaptic connectivity in the homo sapiens. This leads onto a logical, commonsensical, pragmatic and practical homo sapien brain. The homo sapiens due to lack of archaea and the RNA viroids are susceptible retroviral infection. Thus the archaeal colonies and RNA viroidal quasi-species consortia determine the evolution of the human species and the brain networks. Thus extremes of temperature, fibre intake, archaeal colony density, RNA viroidal quasi-species, group identity and retroviral resistance decides on the evolution of homo sapiens and homo neanderthalis as well as the brain networks. The present extremes of temperature and low fibre intake in civilized society can lead to increase in archaeal population densities and quasi-species RNA viroidal networks generating a new homo neanderthalis in a new neanderthalic anthropocene age as opposed to the present homo sapien anthropocene age.


The roots of Western civilisational disease can be related to the starvation of the colonic microflora. The colonic microflora depends upon complex carbohydrates derived from dietary fibre. The processed food of high protein, fat and sugars is digested and absorbed in the stomach and small intestine. A very little of it reaches the colon and widespread use of antibiotics in medicine has produced mass extinction of the colonic microflora. The colonic microflora is extremely diverse and the diversity is lost. There are 100 trillion bacteria in the colon belonging to 1200 species. They regulate the immune system by

inducing the T-regulatory cells. A high fibre diet contributes to colonic microbiota diversity. Interaction with farm animals like cows and dogs also contributes to the colonic microflora diversity. The typical Western diet of high fat, high protein and sugars decreases the colonic microbiota diversity and increase colonic/endosymbiotic archaea producing methanogenesis. The colonic archaea feed upon the mucous lining of the colon and produces leakage of archaea into the blood and tissue system producing endosymbiotic archaea. This results in a chronic inflammatory state. The high fibre diet of Africans, South Americans and Indians produces increased colonic microbiota diversity and increase in clostridial clusters generating SCFA in the gut. High fibre diet is protective against metabolic syndrome and diabetes mellitus. Metabolic syndrome is related to degeneration, cancer, neuropsychiatric illness and autoimmune disease. A high fibre diet of upto 40 g/day can be called as a gut diet. The colonic microflora especially the clostridial cluster digests the fibre generating short chain fatty acids which regulates immunity and metabolism. High fibre diet increases the colonic mucus secretion and the thickness of the mucus lining. A high fibre diet produces increase in clostridial clusters and mucous secretion. This produces a strong gut blood barrier and prevents metabolic endotoxemia which produces a chronic inflammatory response. High dietary fibre intake and the diversity of the colonic microflora with prominent SCFA producing clostridial clusters are interrelated. The clostridial clusters metabolise the complex carbohydrate in dietary fibre to short chain fatty acids butyrate, propionate and acetate. They increase the T-regulatory function. A high fibre diet increases the bacteroides and reduces the firmecutes of the colonic microflora. A high fibre diet is associated with a low body-mass index. A low fibre diet produces increase in colonic archaeal growth as well as endosymbiotic tissue and blood archaea. This produces more of methanogenesis rather than short chain fatty acid synthesis contributing to immune activation. A

low fibre diet is associated a high body-mass index and chronic systemic inflammation. Germ-free mice show cardiac, pulmonary and liver atrophy. Gut microflora is required for the generation of organ systems. The gut microflora is also required for generation of T-regulatory cells. High fibre intake produces more colonic microbiota diversity and increase in clostridial clusters and fermentation by products like butyrate which suppresses inflammation and increases T-regulatory cells. A low fibre diet produces increase in archaeal growth, methanogenesis, destruction of the mucus lining and leakage of the colonic archaea producing endosymbiotic tissue and blood archaea. This produces an immune hyperreactivity contributing to the modern plagues of civilisation - metabolic syndrome, schizophrenia, autism, cancer, autoimmunity and degenerations. The gut microbiota drives human evolution. The humans don't host the gut microbiota but the gut microbiota host us. The human system forms an elaborate culture laboratory for the propagation and survival of the microbiota. The human system is induced by the microbiota for their survival and growth. The human system exists for the microbiota and not the other way round. The same mechanism holds good in plant systems. Plant started the colonized earth as they started symbiosing with bacteria in the roots systems which can derive nutrients from the soil. Human beings form a mobile culture laboratory for the more effective propagation and survival of the microbiota. The microbiota induces the formation of specialized immune cells called innate lymphoid cells. The innate lymphoid cells will direct the lymphocytes not to attack the beneficial bacteria. Thus the endosymbiotic archaea and the gut archaea induce human, primate and animal evolution to generate structures for them to survive and propagate. The source of endosymbiotic archaea, the third element of life is the colonic archaea that leaks into the tissue spaces and blood systems due to breach in the gut blood barrier. The increase in colonic archaea is due to the starvation of the gut microbiota consequent to a low fibre diet. This

results in increase in colonic archaeal growth and destruction of clostridial clusters and bacteroides. The increase colonic archaeal growth in the presence of gut starvation due to low fibre diet eats up the mucus lining and produces breakages in the gut blood barrier. The colonic archaea enters the blood stream and produces endosymbiosis generating endosymbiotic archaea and various new organelle - fructosoids, steroidelle, vitaminocyte, viroidelle, neurotransminoid, porphyrinoids and glycosaminoglycoids.


The increase in endogenous EDLF, a potent inhibitor of membrane Na⁺-K⁺ ATPase, can decrease this enzyme activity. The results showed increased endogenous EDLF synthesis as evidenced by increased HMG CoA reductase activity, which functions as the rate limiting step of the isoprenoid pathway. Studies in our laboratory have demonstrated that EDLF is synthesized by the isoprenoid pathway. The endosymbiotic archaeal sequences in the human genome get expressed by redox stress and osmotic stress of global warming. This results in induction of HIF alpha which will upregulate fructolysis and glycolysis. In the setting of redox stress all glucose gets converted to fructose by the induction of enzymes aldose reductase and sorbitol dehydrogenase. Aldose reductase converts glucose to sorbitol and sorbitol dehydrogenase converts sorbitol to fructose. Since fructose is preferentially phosphorylated by ketohexokinases the cell is depleted of ATP and glucose phosphorylation comes to a halt. Fructose becomes the dominant sugar that is metabolized by fructolysis in expressed archaeal particles in the cell functioning as organelle called fructosoids. The fructose is phosphorylated to fructose 1-phosphate which is acted upon by aldolase B which converts it into glyceraldehyde 3-phosphate and dihydroxy acetone phosphate. Glyceraldehyde 3-phosphate is D1,3-biphosphoglycerate which is converted to then converted 3-phosphoglycerate. The 3-phosphglycerate is converted to 2-phosphoglycerate. 2-phosphoglycerate is converted to phosphoenol pyruvate by the enzyme

enolase. Phosphoenol pyruvate is converted to pyruvate by the enzyme pyruvic kinase. The archaeaon induces HIF alpha which upregulates fructolysis and glycolysis but inhibits pyruvate dehydrogenase. The forward metabolism of pyruvate is stopped. The dephosphorylation of phosphoenol pyruvate is inhibited in the setting of pyruvic kinase inhibition. Phosphoenol pyruvate enters the shikimic acid pathway where it is converted to chorismate. The shikimic acid is synthesized by a pathway starting from glyceraldehyde 3-phosphate. Glyceraldehyde 3-phosphate combines with the pentose phosphate pathway metabolite sedoheptulose 7-phosphate which is converted to erythrose 4-phosphate. The pentose phosphate pathway is upregulated in the presence of the suppression of glycolytic pathway. Erythrose 4-phosphate combines with phosphoenol pyruvate to generate shikimic acid. Shikimic acid combines with another molecule of phosphoenol pyruvate to generate chorismate. The chorismate is converted to prephenic acid and then to parahydroxy phenyl pyruvic acid. Parahydroxy phenyl pyruvic acid is converted to tyrosine and tryptophan as well as neuroactive alkaloids. The shikimic acid pathway is structured in expressed archaeaon organelle called the neurotransminoid. The fructolytic intermediates glyceraldehydes 3-phosphate and pyruvate are the starting points of the DXP pathway of cholesterol synthesis. Glyceraldehyde 3-phosphate combines with pyruvate to form 1-deoxy D-xylulose phosphate (DOXP) which is then converted to 2C methyl erythritol phosphate. 2C methyl erythritol phosphate can be synthesized from erythrose 4-phosphate a metabolite of the shikimic acid pathway. DXP combines with MEP to form isopentenyl pyrophosphate which is converted to cholesterol. Cholesterol is catabolised by archaeal cholesterol oxidases to generate digoxin. The digoxin sugars digitoxose and rhamnose are synthesized by the upregulated pentose phosphate pathway. Glycolytic suppression leads to upregulation of the pentose phosphate pathway. The expressed archaeaon organelle concerned with

cholesterol catabolism and digoxin synthesis is called the steroidelle. The suppression of glycolysis and stimulation of fructolysis results in upregulation of the hexosamine pathway. Fructose is converted to fructose 6-phosphate by ketohexokinases. The fructose 6-phosphate is converted to glucosamine 6-phosphate by the action of glutamine fructose 6-phosphate amidotransferase (GFAT). Glucosamine 6-phosphate is converted to UDP N-acetyl glucosamine which is then converted to N-acetyl glucosamine and various amino sugars. UDP glucose is converted to UDP D-glucuronic acid. UDP D-glucuronic acid is converted to glucuronic acid. This forms the uronic acid synthetic pathway. Uronic acids and hexosamines form repeating units of glycosaminoglycans. In the setting of glycolytic suppression and fructolytic metabolism fructolysis leads to increase synthesis of hexosamines and GAG synthesis. The GAG synthesizing archaeaon particles are called the glycosaminoglycoids. The expressed archaeaon particles are capable of synthesizing antioxidant vitamin C and E. The UDP D-glucose is converted to UDP D-glucuronic acid. UDP D-glucuronic acid is converted to D-glucuronic acid. D-glucuronic acid is converted to L-gulonate by enzyme aldoketoreductases. L-gulonate is converted to L-gulonolactone by lactonase. L-gulonolactone is converted to ascorbic acid by the action of archaeal L-gulo oxidase. The vitamin E is synthesized from shikimate which is converted to tyrosine and then to parahydroxy phenyl pyruvic acid. Parahydroxy phenyl pyruvic acid is converted to homogentisate. Homogentisate is converted to 2-methyl 6-phytyl benzoquinone which is converted to alpha tocopherol. 2-methyl 6-phytyl benzoquinone is converted to 2, 3-methyl 6-phytyl benzoquinone and gamma tocopherol. Vitamin E can also be synthesized by the DXP pathway. Glyceraldehyde 3-phosphate and pyruvate combined to form 1-deoxy D-xylulose 5-phosphate which is converted to 3-isopentenyl pyrophosphate. 3-isopentenyl pyrophosphate and dimethyl allyl pyrophosphate combined to form 2-methyl 6-phytyl benzoquinone which is

converted to tocopherols. The ubiquinone another important membrane antioxidant and part of the mitochondrial electron transport chain is synthesized by the shikimic acid pathway and DXP pathway. The isoprenoid moiety of ubiquinone is contributed from the DXP pathway and the rest of it by tyrosine catabolism. The tyrosine is generated by the shikimic acid pathway. The archaeaon particles concerned with the synthesis of vitamin C, vitamin E and ubiquinone which are all antioxidants are called the vitaminocyte.

Global warming induces endosymbiotic archaeal and RNA viroidal growth. The endosymbiotic archaea and the generated RNA viroids induce aldose reductase which converts glucose to sorbitol. The archaeal polysaccharides and lipopolysaccharides as well as viroids and viruses can induce aldose reductase. Sorbitol is acted upon by sorbitol dehydrogenase to generate fructose which enters fructolytic pathway. Aldose reductase is also induced by the osmotic stress of global warming and redox stress. Aldose reductase is induced by inflammatory and immune stimulation. Archaeal synthesized endogenous digoxin can produce intracellular redox stress and activate NFKB which produces immune activation. Both redox stress and immune activation can activate aldose reductase which converts glucose to fructose. Hypoxic stress or anerobic conditions induces HIF alpha which activates ketohexokinase C which phosphorylates fructose. Fructose is acted upon by fructokinase which converts fructose to fructose 1-phosphate. Fructose 1-phosphate is converted to dihydroxy acetone phosphate and glyceraldehydes 3-phosphate which is converted to pyruvate, acetyl CoA and citrate. Citrate is used for lipid synthesis. Fat deposition occurs in the visceral organs like the liver, heart and kidney. There is no subcutaneous fat deposit. Fructose metabolism bypasses phosphofructokinase which is inhibited by citrate and ATP. Fructose metabolism is therefore not under the regulatory control of the enzyme phosphofructokinase. Fructose transport and metabolism is not regulated by

insulin. Fructose is transported by glut-5 receptor. Fructose does not increase insulin secretion and therefore does not activate lipoprotein lipase. This results in visceral adipogenesis. Fructose induces ChREBP and SREBP elements. This results in increased hepatic lipogenesis by the induction of the enzyme fatty acid synthase, acetyl CoA carboxylase and steroyl CoA desaturace. This increases fatty acids and cholesterol synthesis. Fructose is a lipophilic carbohydrate. Fructose can be converted to glycerol 3-phosphate and fatty acids involved in triglyceride synthesis. Fructose administration leads to increase in triglycerides and VLDL. Fructose consumption leads to insulin resistance, fat accumulation in visceral organs like liver, heart and kidney, insulin resistance, dyslipidemia with increased triglycerides, VLDL and LDL as well as the metabolic syndrome. The metabolic syndrome X can be considered as a fructolytic syndrome. Fructose will increase lipid storage and promote insulin resistance. Fructose can fructosylate proteins producing dysfunction. Fructose has no effect upon ghrelin and leptin in the brain and can lead to increased feeding behaviour. Glucose decreases ghrelin and increases leptin levels. This leads to suppression of appetite. Thus fructose can modulate eating behaviour leading onto obesity. Fructose results in NFKB activation and TNF alpha secretion. TNF alpha can modulate the insulin receptor producing insulin resistance and metabolic syndrome X. Fructose can also lead to leptin resistance and obesity. There is an epidemic of metabolic syndrome X in relation to global warming.

Fructose can activate the sympathetic nervous system. This leads to hypertension and increase in heart rate. Fructose is involved in left ventricular hypertrophy, increase in left ventricular mass and decrease in left ventricular ejection fraction in hypertension. Fructose suppresses the parasympathetic nervous system. Fructose acts as a key inducer for uncontrolled proliferation and hypertrophy of the cardiac musculature consequent to hypertension. The heart uses beta oxidation of fatty acids to generate energy. In the setting of anerobic

glycolysis consequent to myocardial infarction and hypertensive hypertrophy of the heart, there is induction of HIF alpha. This produces increase in ketohexokinase C in the heart which phosphorylates fructose. Ketohexokinase C is a predominant liver enzyme as fructose metabolism is primarily focused in the liver. In the setting of anerobic glycolysis ketohexokinase C is also produced in the brain and the heart. Ketohexokinase A is the predominant enzyme in the heart and brain. In the setting of anerobic glycolysis ketohexokinase A which preferentially metabolizes glucose is converted to ketohexokinase C metabolizing fructose by the mechanism of RNA splicing. Anerobic conditions can induce HIF alpha which activates the splicing factor SF3B1. Thus HIF alpha induced by glycolysis induces SF3B1 which induces ketohexokinase C producing fructolysis in the heart. The fructose is converted to lipids, glycogen and glycosaminoglycans in the heart producing cardiac hypertrophy. Fructose metabolism is not under regulatory control of the key enzyme phosphofructokinase by citrate and ATP. The fructolytic pathway functions as a rogue pathway not under any regulatory control. Fructose is a key contributor. The sympathetic overactivity and parasympathetic blockade consequent to fructose can produce immune activation. The sympathetic overactivity and parasympathetic blockade can lead to dysregulation of the nervous system.

Fructose can activate NFKB and tumour necrosis factor alpha. The vagal blockade produced by fructose also leads to increase in immune activation. Fructose can inhibit neutrophilic phagocytosis. Increased fructose ingestion can lead to immune activation and respiratory diseases like chronic bronchitis, COPD and bronchial asthma as well as interstitial lung disease. This immune activation induced by fructose is called as fructositis. Fructosylated proteins can serve as autoantigens. Fructosylated proteins can bind to RAGE receptors producing immune activation. Global warming induced fructose disease is the basis of the epidemic of autoimmune disease rising with the global warming.

Fructose increases flux through the pentose phosphate pathway. This increases the availability of hexose sugars like ribose for nucleic acid synthesis. This increases DNA synthesis. There is also consequent increase in protein synthesis. The tumour cells can slurp up fructose. Tumour cells utilise fructose for proliferation. The fetal cells like tumour cells also utilize fructose for proliferation. Fructose can promote metastatic deposits. The tumour cells use fructose differently from glucose. Cancer cells utilize fructose to support proliferation and metastasis. Fructose increases nucleic acid synthesis. Fructose can help the cancer cells to grow fast by inducing the transketolase enzyme and the pentose phosphate pathway. Fructose administration increases redox stress, DNA damage and cell inflammation all contributing to oncogenesis. Fructose is the most abundant sugar in the fetal tissues and is important in the development of fetus by promoting cell proliferation. Fructose is 20-times more concentrated in the fetal blood than glucose. Sperm cells and ova also use fructose for metabolism and energy. Thus all rapidly proliferating cells - cancer cells, fetal cells and reproductive cells depends upon fructolysis. Fructose is the principal diet of the cancer cells. Global warming and archaeal growth results in HIF alpha induction. HIF alpha induces tumour growth. HIF alpha also increases glycolysis. But archaeal induced HIF alpha also induces aldose reductase which converts glucose to fructose and metabolism proceeds along the fructolytic pathway. Fructosylation of glycolytic enzymes brings glycolysis to a halt. Fructosylation of mitochondrial PT pore hexokinase can result in PT pore dysfunction and cell proliferation. The fructolytic pathway is the principal energetic pathway for rapidly proliferating cancer cells, fetal cells and stem cells. The global warming will induce the Warburg phenotype of the fructolytic variety. This leads to an epidemic of cancer. There is an epidemic of cancer in relation to global warming. The fructolytic pathway can lead to increased DNA synthesis and RNA synthesis due to flux via the pentose phosphate pathway.

The fructolytic pathway can be directed to the GABA shunt generating succinyl CoA and glycine. These are substrates for porphyrin templates to form RNA viroids. The archaeal induced redox stress can induce endogenous HERV expression and reverse transcriptase expression. The RNA viroids are converted by HERV reverse transcriptase to corresponding DNA and integrated into the genome by HERV integrase. The integrated RNA viroid related DNA can function as jumping genes producing genomic plasticity and genomic change.

Fructose as said before induces the thiamine dependent transketolase flux. It increases both the oxidative and non oxidative pentose phosphate pathway. This increases nucleic acids and glycosaminoglycan synthesis. Fructose is converted to fructose 1-phosphate which is acted upon by aldolase B converting it into glyceraldehyde and dihydroxy acetone phosphate. Glyceraldehyde is converted glyceraldehyde 3-phosphate by triokinase. DHAP can be converted to glyceraldehyde 3-phosphate by the enzyme triose phosphate isomerase. Glyceraldehyde 3-phosphate can be converted to pyruvate. This pyruvate can be channeled to gluconeogenesis and glycogen storage by the action of the enzyme pyruvate carboxylase. This results in the conversion of glyceraldehyde 3-phosphate to pyruvate and via pyruvate carboxylase to glucose 1-phosphate. Glucose 1-phosphate is converted to glycogen polymers. Thus fructolysis results in glycogen storage. The pyruvate that is generated by fructolysis is converted to glutamate which can enter the GABA shunt pathway. The GABA shunt pathway generates glycine and succinyl CoA which are substrates for ALA synthesis. Thus fructolysis stimulates porphyrin synthesis. The porphyrins can self organize to form supramolecular arrays called porphyrions. Porphyrions can self replicate by using other porphyrions as templates. Porphyrions can have energetic and ATP synthesis by electron or photon transport. Porphyrions are dipolar molecules and in the setting of digoxin induced membrane sodium potassium ATPase inhibition can generate a pumped phonon system induced

quantal state and quantal perception. They can function as quantal computers with information storage. The porphyrions are basic self replicating living structures. The porphyrins can act as a template for the formation RNA, DNA and proteins. The RNA viroids, the DNA viroids and proteins generated by abiogenesis on porphyrin templates can self organize to form primitive archaea. The archaea are thus capable of abiogenic replication on porphyrin templates. The archaea can induce HIF alpha and further aldose reductase induction promoting fructolysis.

Fructose is an addictive substance. Fructose affects the hedonic centres in the brain concerned with pleasure and reward. In the addiction scale fructose is more addictive then cocaine and cannabis. Fructose decreases BDNF. Low BDNF produces changes in the brain resulting in schizophrenia and depression. Fructose can also produce chronic inflammation involved in schizophrenia. The fructolytic pathway is important in the genesis of psychiatric disorders. The increased fructolysis can lead to fructosylation of lipoproteins especially apoprotein E and apoprotein B. Apo B can undergo lysine fructosylation leading to defective LDL and cholesterol uptake by the brain. This results in autism and schizophrenia. Fructolysis leads to cholesterol depletion of the brain. Cholesterol is required for the formation of synaptic connections and cerebral cortex. This leads to cerebral cortical atrophy and cerebellar dominance in the presence of cholesterol depletion. This can contribute to the genesis of the cerebellar cognitive affective syndrome, the basis of schizophrenia and autism. There is an epidemic of schizophrenia and autism correlating with global warming. Fructosylation of LDL and brain cholesterol depletion can lead to dysfunction in synaptic transport. There is more release of glutamate into the synaptic from the presynaptic neuron consequent to a presynaptic neuron membrane dysfunction as a result of cholesterol depletion. This contributes to glutamate excitotoxicity. Glutame excitotoxicity can contribute to neuronal

degeneration. Fructose can also produce zinc deficiency. Increased fructose intake produces zinc depletion leading to defective formation metallothionines leading to defective heavy metal excretion. This leads to mercury, cadmium and aluminium toxicity in the brain leading to psychiatric disorders like autism and degenerations like Alzheimer's disease. Zinc deficiency consequent to fructose excess can lead to copper excess. The zinc containing neurons in the cerebral cortex are called the gluzinergic neurons. The cerebral cortex especially the prefrontal cortex will atrophy producing cerebellar and brain stem dominance. Copper is required for the dominance of subcortical cognitive structures. Fructose ingestion can also lead to calcium deficiency which can produce defective calcium signaling. Fructose ingestion leads to fructolysis and the generation of reactive species 3-deoxyglucosone important in mallard reachion and fructosylation of neuronal proteins leading to their defective function. Neuropsychiatric disorders and neurodegenerative disorders can be described as fructose diseases. Topiramate a fructose analogue is used to treat motor neuron disease. Fructose biphosphate aldolase B mutation seen in schizophrenia, bipolar disorders and depression. 6-phosphofructo 2-kinase and fructose 2,6-biphosphotase abnormalities have been seen in schizophrenia. Fructose metabolism abnormalities have been noted in schizophrenia, manic depressive psychosis and autism. Fructose inhibits brain plasticity. Fructose inhibits the ability of neurons to communicate with each other. The wiring and re-wiring of neurons is inhibited. Fructose leads to a neuronal disconnection syndrome.

Fructose can increase flux via the pentose phosphate pathway and hexosamine pathway leading to glycosaminoglycan synthesis. Glycosaminoglycan accumulation in the tissues can produce mucopolysaccharidosis and fibrosis. Increased heparan sulphate accumulation in the brain leads to formation of amyloids plaques and Alzheimer's disease.

Connective tissue accumulation in the lung leads to interstitial lung disease, in the kidneys it produces tubular atrophy and a chronic renal failure similar to meso-American nephropathy. Connective tissue accumulation in the heart can lead to a restrictive cardiomyopathy. Accumulation of GAG especially hyaluronic acid in bones and joints leads to osteoarthritis and spondylosis. GAG accumulation in the endocrine organs can produce thyroid dysfunction resulting in MNG and thyroiditis, pancreatic dysfunction producing chronic calcific pancreatitis and adrenal dysfunction producing hypoadrenalism. Accumulation of GAG in the vascular tissues can result in mucoid angiopathy contributing to coronary artery disease and stroke. The accumulation of lipids due to the fructolytic pathway along with glycosaminoglycans can lead to fatty liver. This can later lead onto cirrhosis of the liver. Fructose is the principal culprit for fatty liver and cirrhosis. The glycine synthesized from the fructolytic intermediate phosphoglycerate can play a role inhibiting fatty liver. There is an epidemic of chronic renal failure due to tubular fibrosis, mucoid angiopathic vascular diseases, cardiomyopathy, multiple endocrine failures, cirrhosis of the liver, interstitial lung disease, degenerative bone and joint diseases and degenerative brain disease like Alzheimer's disease and Parkinson's disease as a consequence of global warming.

The increasing growth of archaea results in increased secretion of archaeal RNA viroids. They can interrupt mRNA function and dysregulates cell metabolism. This is by the mechanism of mRNA blockade. The viroidal RNA can combine with proteins generating prion proteins. This produces a protein conformation defect. This produces a prion protein disease. Abnormal protein conformation of beta amyloid, alpha synuclein, ribonuceloproteins, islet associated amyloid polypeptide and tumour suppressor protein can lead to an epidemic of Alzheimer's disease due to beta amyloid accumulation, alpha synuclein accumulation producing Parkinson's disease, prion like ribonucleoproteins producing motor neuron disease, metabolic syndrome X due

to defective insulin secretion as a result of IAPP and abnormal prion like tumour suppressor protein producing tumours. These prion diseases induced by archaeal RNA viroids are also transmissible. Thus global warming related fructolysis leads to archaeal induced RNA viroidal mediated prion disease and amyloidosis. This raises the spectacle of a Cassandra syndrome of human extinction.

Fructose is phosphorylated to fructose 1-phosphate by ketohexokinase C or fructokinase. Fructose 1-phosphate is converted to glyceraldehyde which is then converted to glyceraldehyde 3-phosphate and dihydroxy acetone phosphate (DHAP). Fructose 1-phosphate is cleaved to DHAP and glyceraldehyde 3-phosphate. DHAP can enter the glycolytic pathway or can go to gluconeogenetic pathway. DHAP generated from fructose 1-phosphate by the action of aldolase B is acted upon by triose phosphate isomerase converting it into glyceraldehydes 3-phosphate. Glyceraldehyde 3-phosphate can be fructolysed to pyruvate and acetyl CoA. Acetyl CoA can be used for cholesterol synthesis for storage. The pyruvate generated from glyceraldehydes 3-phosphate can be converted to the citrate which can be used for fatty acid synthesis by the action of enzymes acetyl CoA carboxylase, fatty acid synthase and malonate dehydrogenase. Glyceraldehyde is acted upon by alcohol dehydrogenase which converts it into glycerol. Glycerol is acted upon by glycerolkinase converting it into glycerol phosphate used for phosphoglyceride and triglyceride synthesis. Glyceraldehyde can also be acted upon by triokinase converting it into glyceraldehydes 3-phosphate which is then converted to DHAP by triose phosphate isomerase. Glyceral phosphate and dihydroxy acetone phosphate are interconvertible by the action of the enzyme glycerol phosphate dehydrogenase. Glycerol and fatty acids generated by fructolysis contribute to lipid synthesis and fat is stored. Fructose does not increase insulin secretion and doesn't need insulin for transport into the cell. Fructose is transported by the fructose transporter GLUT-5. Ketohexokinase C is

exclusively seen in the liver which is the principal site of fructose metabolism. In the presence of hypoxia and anerobic states, there is induction of HIF alpha which can induce ketohexokinase C or fructokinase in the liver, kidney, gastrointestinal tract, brain and heart. Fructose 1-phosphate by-passes the enzyme phosphofructokinase which is the key regulatory enzyme the glycolytic pathway. Phosphofructokinase is inhibited by ATP and citrate. Thus stress induced fructolysis is an unregulated pathway not amenable to metabolic switches. Fructose does not depend upon insulin for its transport and fructolysis. Therefore fructolysis is not under insulin or endocrine control. It is an unregulated pathway.

The phosphorylation of fructose depletes the cell of ATP. Ketohexokinases preferentially phosphorylate fructose over glucose if it is available. In the presence of redox stress, osmotic stress and archaea/viroids aldose reductase is induced converting all the glucose to fructose. Glycolytic pathway comes to a halt as no ATP is available for phosphorylation of glucose and glucose as such gets converted to fructose. The fructose phosphorylation depletes the cell of ATP. ATP is converted to ADP and AMP which is deaminated to produce uric acid. Fructose increases flux in the pentose phosphate pathway increasing nucleic acid synthesis. Purine degradation results in hyperuricemia. Thus fructolysis results in increase in uric acid accumulation in the body. Uric acid will suppress the mitochondrial oxidative phosphorylation as well as produce endothelial dysfunction. The depletion of ATP by fructose phosphorylation results in membrane sodium potassium ATPase inhibition. This results in reduced energy needs of the cell as 80% of the ATP generated by metabolism is used for maintaining the sodium potassium pump. This results in membrane inhibition generated hibernatory state. **ATPase** The glyceraldehydes 3-phosphate generated by fructolysis can be converted to the pyruvate and acetyl CoA used for cholesterol synthesis. The cholesterol that is synthesized is


used for digoxin synthesis. Digoxin also has got aglycone part which contains sugars like digitoxose and rhamnose. Digitoxose and rhamnose are generated by the fructose induced flux and upgradation of the pentose phosphate pathway. Thus fructolysis results in a hyperdigoxinemic state and membrane sodium potassium ATPase inhibition. This results in cell protection and hibernation.

Fructose produces flux along the pentose phosphate pathway and hexosamine pathway. This results in GAG and nucleic acid synthesis. Fructose is converted to fructose 1-phosphate which is then converted to ribulose 5-phosphate. Ribulose 5-phosphate is acted upon by an isomerase converting it into xylulose 5-phosphate and ribose 5-phosphate and ribose 5-phosphate and ribose 5-phosphate interact to produce glyceraldehydes 3-phosphate and sedoheptulose 7-phosphate which is then converted to fructose 6-phosphate and erythrose 4-phosphate. The pentose phosphate pathway generates ribose for nucleic acid synthesis. The pathway also generates hexosamines for GAG synthesis. The pentose phosphate pathway also produces digitoxose and rhamnose for digoxin synthesis.

The global warming results in endosymbiotic archaeal growth. Archaea can induce aldose reductase which converts glucose to fructose. Fructolysis promotes flux along the pentose phosphate pathway generating nucleic acids glycosaminoglycans. Fructolysis also generates glyceraldehydes 3-phosphate and further pyruvate. The pyruvate can enter the pyruvate carboxylase scheme generating gluconeogenesis and glycogen synthesis. Thus fructolysis can produce glycogen storage. Pyruvate can be converted to citrate for lipid synthesis. Pyruvate can also be converted to acetyl CoA for cholesterol synthesis. The flux along the pentose phosphate pathway generates the digoxin sugars, digitoxose and rhamnose. Cholesterol can be converted to digoxin producing a hyperdigoxinemic state. Digoxin produces membrane sodium potassium ATPase inhibition. The selective phosphorylation of fructose by

fructokinase depletes the cell of ATP producing membrane sodium potassium ATPase inhibition. This results in the generation of a hibernatory state. The fructolysis generated pyruvate can get converted to glutamate which can enter the GABA shunt pathway producing succinyl CoA and glycine for porphyrin synthesis. Porphyrins can form self replicating porphyrions or act as a template for the formation of RNA viroids, DNA viroids and prions which can symbiose to form archaea. Thus the archaea are capable of self replicating on porphyrin templates. The fructolysis thus produces a hibernatory syndrome with fat, glycogen and nucleic acid synthesis and storage. Fructolysis results in the generation of a hibernatory species, the homo neanderthalis. The fructolysis generated membrane sodium potassium ATPase inhibition results in cell hibernation and ATP sparing. The lack of ATP and digoxin induced membrane sodium potassium ATPase inhibition results in cortical inhibition and cerebellar dominance. This produces a somnolent state and a cerebellar cognitive affective disorder. The porphyrions generated by fructolysis produces quantal perception and cerebellar dominance. The storage of glycogen, fat and GAG results in obesity. The cerebellar cognitive affective syndrome results in a hypersexual state. The fructolysis and fructose can activate NFKB producing immune activation. The fructosylation of glycolytic and mitochondrial proteins suppresses the body's normal energetic which depends upon glycolysis and mitochondrial oxidative phosphorylation. Fructosylation of proteins results in blockade of glycolysis and mitochondrial oxidative phosphorylation. The body's energy needs are produced by fructolysis, porphyrin array mediated electron transport chain and ATP synthesis as well as membrane sodium potassium ATPase inhibition relation ATP synthesis. This produces a new species by archaeal symbiosis consequent to global warming - the homo neanderthalis. This can be called as the tropical hibernatory syndrome consequent to global warming.

This can be called also as a fructose disease. Endosymbiotic archaea and viroids induce aldose reductase and converts body glucose to fructose leading to preferential fructose phosphorylation by ketohexokinase C. Fructolysis results in fructose 1-phosphate being acted upon by aldolase B resulting in the formation of glyceraldehyde and dihydroxy acetone phosphate. Glyceraldehyde can be converted to glyceraldehyde 3-phosphate and this contributes to pyruvate formation. Pyruvate enters the GABA shunt resulting in the formation of succinyl CoA and glycine. They are substrates for porphyrin synthesis and porphyrion formation. The porphyrins form a template for the formation of RNA viroids, DNA viroids, prions, isoprenoids and polysaccharides. They can symbiose together to form primitive archaea. The archaea can further induce alpha, aldose reductose and fructolysis resulting porphyrinogenesis and archaeal self replication. The archaea by methanogenesis contributes to global warming which leads to further archaeal growth and a vicious cycle with no regulatory switches. The fructolytic pathway induced by archaea by-passes regulatory enzyme phosphofructokinase and is practically unregulated. Fructolytic pathway contributes to glycogen, lipids, cholesterol, hexose sugars and mucopolysaccharides synthesis and storage. This leads onto a hibernatory state and archaeal symbiosis induced species change resulting in neanderthalisation of the homo sapien species. The digoxin and fructose phosphorylation induced ATP depletion leads to membrane sodium potassium ATPase inhibition, sparing of ATP and tissue hibernation as most of the energy needs of the body are for the working of the sodium potassium pump. The cholesterol that is synthesized by fructolysis is catabolized cholesterol oxidases for archaeal energetics. Archaea also derives its energy from a primitive form of electron transport chain functioning in self replicating porphyrin arrays. The archaeal digoxin induced sodium potassium ATPase inhibition can lead to membrane ATP synthesis. The archaea and the new human species phenotype


derives its energy from the above mentioned mechanism. The glycolytic enzymes and the mitochondrial PT pore hexokinase are fructosylated making them dysfunction. The fructosylated glycolytic enzymes lead to generation of antiglycolytic enzyme antibodies and disease states. The human body's principal method of energetics tissue glycolysis and oxidative phosphorylation comes to a grinding halt. The human body is taken over by the overgrowth of endosymbiotic archaea and assumes hibernatory state with accumulation of glycogen, lipids, mucopolysaccharides and nucleic acids. The catabolic pathways for energy generation related to glucose, glycolysis and oxphos scheme stops. The human body can depend upon ketogenesis from fat and proteins. The upregulated fructolytic pathway generates phosphoglycerate which converted to phosphoserine and glycine. They can be converted to other amino acids and used for ketogenesis. The body assumes a high BMI index and obesity with visceral fat storage and adiposity akin to the Neanderthal metabolic phenotype. Digoxin induced membrane sodium potassium ATPase inhibition results in cortical dysfunction. The brain porphyrins can form a quantal pumped phonon system resulting in quantal perception and low level EMF absorption. This leads to prefrontal cortex atrophy and cerebellar dominance. Fructose itself leads to sympathetic hyperactivity and parasympathetic blockade. This leads onto a functional form of cerebellar cognition and quantal perception resulting in a new brain phenotype. The cerebellar cognitive syndrome leads to a robotic human phenotype. The phenotype is impulsive, has extrasensory perception and has less of speech production. Communication is by symbolic acts. The cerebellar phenotype doesn't have a cortical control and contributes to surrealistic behavior patterns. This produces impulsive behavior and an epidemic of surrealism where the rational prefrontal cortex becomes extinct. This leads to extremes of spirituality, violent and terroristic behavior and hypersexual states contributing to a state of trancedence underlined and

reinforced by quantal perception. Cerebellar phenotype owing to its quantal perception behaves as a community and not as an individual. This creates new social and psychological phenotypes. Fructose induces NFKB and immune activation. This results in an immune activatory phenotype. Cultured T-reg cells on high fructose diet have 62% less IL-40 secretion than controls. This results in a hyperimmune state with fructosylated proteins acting as antigens. The fructolytic pathway can lead to increased DNA synthesis and RNA synthesis due to flux via the pentose phosphate pathway. The fructolytic pathway can be directed to the GABA shunt generating succinyl CoA and glycine. These are substrates for porphyrin templates to form RNA viroids. The archaeal induced redox stress can induce endogenous HERV expression and reverse transcriptase expression. The RNA viroids are converted by HERV reverse transcriptase to corresponding DNA and integrated into the genome by HERV integrase. The integrated RNA viroid related DNA can function as jumping genes producing genomic plasticity and genomic change. This produces a new genotype. Fructosylation of body proteins and enzymes results in a protein processing defect resulting in loss of protein function. The human cell function due to protein fructosylation, protein processing defects and protein conformational defects comes to a grinding halt. Fructolytic pathway generates porphyrin arrays induced ATP production, membrane sodium potassium ATPase inhibition induced ATP synthesis and fructolysis induced ATP generation. This provides energy for porphyrin template induced archaeal replication. The digoxin and fructose phosphorylation induced ATP depletion produces cell membrane sodium potassium ATPase inhibition and a hibernatory state. This leads onto a somnolent sleepy state. The cholesterol catabolism by cholesterol oxidases for archaeal energetics leads to defective sex hormone synthesis. This leads onto an asexual androgynous state. The cerebellar cognitive syndrome due to prefrontal cortical atrophy consequent to porphyrion induced low level EMF perception

produces a hypersexual state. This results in male-female equidominance and changes in sexual behavior of the population. Thus the fructose disease consequent to global warming results in a new neuronal, immune, metabolic, sexual, social phenotype. The human body is converted to a zombie for the global warming related endosymbiotic archaea to thrive. The neuronal, metabolic, sexual and social phenotype creates the necessary environment endosymbiotic archaeal multiplication and the human body is converted to a zombie phenotype. This can be called as a hibernatory zombie syndrome. Due to the new sexual and social phenotype with asexuality and hypersexuality and female-male equidominance the human population falls. The global warming and archaeal induction of HIF alpha resulting in the Warburg phenotype leads to changes in the metabolic scheme of the cells producing body cell transformation to stem cells. The stem cells depend upon glycolysis or fructolysis for energy needs. The Warburg phenotype produces an acidic pH which can result in conversion of body cells to stem cells. The stem cells conversion results in loss of tissue function. The cerebral cortex synaptic connectivity is lost and becomes dysfunction leading to subcortical cerebellar dominance. The immune stem cells proliferate producing an autoimmune disease. The various tissue cells the specialized function like neuron, nephron and muscle cell all because of stem cell conversion becomes dysfunctional. This produces a stem cell syndrome with human somatic cells being converted to stem cells with loss of function and uncontrolled proliferation. The fructosylation of proteins results in protein function defects. The fructosylation of LDL results in defective cholesterol transport to the cells. This results in steroidal hormone synthesis defects. Cholesterol is required for formation of synaptic connectivity and this leads to cerebral cortical dysfunction. The hemoglobin becomes fructosylated and oxygen transport is affected. This leads to hypoxia and anerobic states. The hypoxia and anerobic states induces HIF alpha and the Warburg fructolytic

phenotype. The HIF alpha also induces aldose reductase converting glucose to fructose and inducing the fructolytic scheme. The fructolysis induced GABA shunt pathway and porphyrin synthesis results in further archaeal porphyrin template related replication. This results in further archaeal induced fructolysis and the vicious irreversible cycle proceeds. The uncontrolled growth of archaea leads to still further global warming. The world of endosymbiotic eternal archaea takes over and persists during the extremophilic climatic changes of global warming. The human beings exist as neanderthalic zombies serving archaeal multiplication. The homo sapiens gets converted to a new phenotype, genotype, immunotype, metabolonomic type and brain type. This is called as hibernatory zombie related to global warming - homo neoneanderthalis.

Table 1

	Serum fi	Serum fructose		Serum fructokinase		Aldolase B		AG
	Mean	±SD	Mean	±SD	Mean	±SD	Mean	±SD
Normal	2.50	0.195	8.50	0.405	3.50	1.304	3.50	0.707
SyX	21.203	5.201	18.91	2.942	8.01	1.244	18.46	4.623
CAD	31.40	3.212	21.18	2.267	9.02	0.667	21.41	1.653
CVA	29.98	4.002	24.96	3.829	11.72	1.397	21.65	2.755
DCM/EMF	32.04	4.955	21.37	2.050	10.89	1.344	20.12	2.855
F value	17.373		13.973		13.903		21.081	
p value	< 0.01		< 0.01		< 0.01		< 0.01	

Table 2

	Total TG	Total TG		Serum ATP levels		Uric acid		lase
	Mean	±SD	Mean	±SD	Mean	±SD	Mean	±SD
Normal	124.00	3.688	2.50	0.405	5.70	0.369	7.50	1.704
SyX	262.40	32.790	0.82	0.143	6.21	0.452	2.20	0.583
CAD	252.44	35.388	0.85	0.085	9.00	0.485	2.23	0.567
CVA	297.64	36.410	0.79	0.081	9.34	1.641	2.02	0.303
DCM/EMF	302.00	25.166	0.77	0.151	9.26	1.048	1.41	0.310
F value	16.378		59.169		14.166		55.173	
p value	< 0.01		< 0.01		< 0.01		< 0.01	



Table 3

	Anti-enolase	Anti-enolase		tekinase	Anti-GAPD	H
	Mean	±SD	Mean	±SD	Mean	±SD
Normal	1.50	0.358	50.40	5.960	5.20	0.363
SyX	0.51	0.185	17.04	3.556	1.73	0.371
CAD	0.55	0.154	16.06	6.811	1.78	0.349
CVA	0.66	0.182	21.79	4.567	1.50	0.307
DCM/EMF	0.49	0.197	18.68	4.585	1.54	0.471
F value	14.091		21.073		58.769	
p value	< 0.01		< 0.01		< 0.01	

References

[1] Kurup RK, Kurup PA. Global Warming, Archaea and Viroid Induced Symbiotic Human Evolution and the Fructosoid Organelle. New York: Open Science, 2016.

A Cholesterol and Actinide Dependent
Shadow Biosphere of Archaea and
Viroids in Metabolic Syndrome - Type
2 Diabetes Mellitus with Coronary
Artery Disease and Stroke

Introduction

Actinides like rutile, endogenous digoxin as well as organisms like phytoplasmas and viroids have been implicated in the etiology of metabolic syndrome X - type 2 diabetes mellitus, CVA and CAD.¹⁻⁴ Endogenous digoxin has been related to the pathogenesis of metabolic syndrome - type 2 diabetes mellitus, CVA and CAD.⁴ The possibility of endogenous digoxin synthesis by actinide based primitive organism like archaea with a mevalonate pathway and cholesterol catabolism was considered.⁵⁻⁸ An actinide dependent shadow biosphere of archaea and viroids in metabolic syndrome X, CVA and CAD is described.^{7,9} Metal actinides in beach sands have been postulated to play a role in abiogenesis.⁷ A hypothesis of cholesterol as the primal prebiotic molecule synthesized on actinide surfaces with all other biomolecules arising from it and a self replicating cholesterol lipid organism as the initial life form is presented.

Global warming can lead to osmotic stress consequent to dehydration. The increase in actinidic archaeal growth leads to cholesterol catabolism and digoxin synthesis. Digoxin produces membrane sodium potassium ATPase inhibition and increase in intracellular calcium producing mitochondrial dysfunction. This results in oxidative stress. The oxidative stress and osmotic stress can induce the enzyme aldose reductase which converts glucose to fructose. Fructose has got a low km value for ketokinase as compared to glucose. Therefore fructose gets phosphorylated more to fructose phosphate and the cell is depleted of ATP. The cell depletion of ATP leads to oxidative stress and chronic inflammation consequent to induction of NFKB. Oxidative stress can open the mitochondrial PT pore producing release of cyto C and activation of the caspase cascade of cell death. The fructose phosphate can enter the pentose phosphate pathway synthesizing ribose and nucleic acid. The depletion of cellular ATP results in generation of AMP and ADP which are acted upon by deaminases causing

hyperuricemia. Uric acid can produce endothelial dysfunction and vascular disease. Uric acid can also produce mitochondrial dysfunction. The fructose phosphate can enter the glucosamine pathway synthesizing GAG and producing mucopolysaccharide accumulation. Fructose can fructosylate proteins making them antigenic and producing an autoimmune response. This can lead to global warming related metabolic syndrome X.

Materials and Methods

The following groups were included in the study: - metabolic syndrome X type 2 diabetes mellitus, CVA and CAD. There were 10 patients in each group and each patient had an age and sex matched healthy control selected randomly from the general population. The blood samples were drawn in the fasting state before treatment was initiated. Plasma from fasting heparinised blood was used and the experimental protocol was as follows (I) Plasma+phosphate buffered saline, (II) same as I+cholesterol substrate, (III) same as II+rutile 0.1 mg/ml, (IV) same as II+ciprofloxacine and doxycycline each in a concentration of 1 mg/ml. Cholesterol substrate was prepared as described by Richmond. 10 Aliquots were withdrawn at zero time immediately after mixing and after incubation at 37 °C for 1 hour. The following estimations were carried out: -Cytochrome F420, free RNA, free DNA, polycyclic aromatic hydrocarbon, hydrogen peroxide, dopamine, serotonin, pyruvate, ammonia, glutamate, cytochrome C, hexokinase, ATP synthase, HMG CoA reductase, digoxin and bile acids. 11-13 Cytochrome F420 was estimated flourimetrically (excitation wavelength 420 nm and emission wavelength 520 nm). Polycyclic aromatic hydrocarbon was estimated by measuring hydrogen peroxide liberated by using glucose reagent. Informed consent of the subjects and the approval of the ethics committee were obtained for the study. The statistical analysis was done by ANOVA.

Results

Plasma of control subjects showed increased levels of the above mentioned parameters with after incubation for 1 hour and addition of cholesterol substrate resulted in still further significant increase in these parameters. The plasma of patients showed similar results but the extent of increase was more. The addition of antibiotics to the control plasma caused a decrease in all the parameters while addition of rutile increased their levels. The addition of antibiotics to the patient's plasma caused a decrease in all the parameters while addition of rutile increased their levels but the extent of change was more in patient's sera as compared to controls. The results are expressed in tables 1-7 as percentage change in the parameters after 1 hour incubation as compared to the values at zero time.

Table 1. Effect of rutile and antibiotics on cytochrome F420 and PAH.

Group	CYT F420 % (Increase with Rutile)		CYT F420 % (Decrease with Doxy+Cipro)		PAH % change (Increase with Rutile)		PAH % change (Decrease with Doxy+Cipro)	
	Mean	±SD	Mean	±SD	Mean	±SD	Mean	±SD
Normal	4.48	0.15	18.24	0.66	4.45	0.14	18.25	0.72
DM	22.59	1.86	57.05	8.45	23.40	1.55	65.77	5.27
CVA	22.29	1.66	59.02	7.50	23.23	1.97	65.89	5.05
CAD	22.06	1.61	57.81	6.04	23.46	1.91	61.56	4.61
F value	306.749		130.054		391.318		257.996	
P value	< 0.001		< 0.001		< 0.001		< 0.001	

Group		DNA % change (Increase with Rutile)		DNA % change (Decrease with Doxy+Cipro)		RNA % change (Increase with Rutile)		change se with ipro)
	Mean	±SD	Mean	±SD	Mean	±SD	Mean	±SD
Normal	4.37	0.15	18.39	0.38	4.37	0.13	18.38	0.48
DM	23.01	1.67	65.35	3.56	23.33	1.86	66.46	3.65
CVA	22.56	2.46	62.70	4.53	23.32	1.74	65.67	4.16
CAD	23.30	1.42	65.07	4.95	23.11	1.52	66.68	3.97
F value	337.577		356.621		427.828		654.453	
P value	< 0.001		< 0.001		< 0.001		< 0.001	

Table 2. Effect of rutile and antibiotics on free RNA and DNA.

Table 3. Effect of rutile and antibiotics on HMG CoA reductase and ATP synthase.

Group	HMG CoA R % change (Increase with Rutile)		HMG CoA R % change (Decrease with Doxy+Cipro)		ATP synthase % (Increase with Rutile)		ATP synthase % (Decrease with Doxy+Cipro)	
	Mean	±SD	Mean	±SD	Mean	±SD	Mean	± SD
Normal	4.30	0.20	18.35	0.35	4.40	0.11	18.78	0.11
DM	23.06	1.65	62.25	6.24	23.72	1.73	66.25	3.69
CVA	22.86	2.58	66.53	5.59	23.15	1.62	66.48	4.17
CAD	22.38	2.38	60.65	5.27	23.00	1.64	66.67	4.21
F value	319.332		199.553		449.503		673.081	
P value	< 0.001		< 0.001		< 0.001		< 0.001	

Table 4. Effect of rutile and antibiotics on digoxin and bile acids.

Group	Digoxin (ng/ml) (Increase with Rutile)		Digoxin (ng/ml) (Decrease with Doxy+Cipro)		Bile acids % change (Increase with Rutile)		Bile acids % change (Decrease with Doxy+Cipro)	
	Mean	±SD	Mean	±SD	Mean	±SD	Mean	± SD
Normal	0.11	0.00	0.054	0.003	4.29	0.18	18.15	0.58
DM	0.47	0.04	0.202	0.025	22.87	2.58	64.51	5.93
CVA	0.56	0.05	0.220	0.052	22.29	1.47	64.35	5.58
CAD	0.53	0.06	0.212	0.045	23.30	1.88	62.49	7.26
F value	135.116		71.706		290.441		203.651	
P value	< 0.001		< 0.001		< 0.001		< 0.001	

Group		Pyruvate % change (Increase with Rutile)		Pyruvate % change (Decrease with Doxy+Cipro)		Hexokinase % change (Increase with Rutile)		Hexokinase % change (Decrease with Doxy+Cipro)	
	Mean	± SD	Mean	±SD	Mean	±SD	Mean	±SD	
Normal	4.34	0.21	18.43	0.82	4.21	0.16	18.56	0.76	
DM	20.67	1.38	58.75	8.12	23.23	1.88	65.11	5.14	
CVA	21.21	2.36	58.73	8.10	21.11	2.25	64.20	5.38	
CAD	21.07	1.79	63.90	7.13	22.47	2.17	65.97	4.62	
F value	321.255		115.242		292.065		317.966		
P value	< 0.001		< 0.001		< 0.001		< 0.001		

Table 5. Effect of rutile and antibiotics on pyruvate and hexokinase.

Table 6. Effect of rutile and antibiotics on hydrogen peroxide and delta amino levulinic acid.

Group	H ₂ O ₂ % (Increase with Rutile)		H ₂ O ₂ % (Decrease with Doxy+Cipro)		ALA % (Increase with Rutile)		ALA % (Decrease with Doxy+Cipro)	
	Mean	±SD	Mean	±SD	Mean	±SD	Mean	±SD
Normal	4.43	0.19	18.13	0.63	4.40	0.10	18.48	0.39
DM	23.27	1.53	58.91	6.09	22.87	1.84	66.31	3.68
CVA	23.32	1.71	63.15	7.62	23.45	1.79	66.32	3.63
CAD	22.86	1.91	63.66	6.88	23.17	1.88	68.53	2.65
F value	380.721		171.228		372.716		556.411	
P value	e < 0.001		< 0.001		< 0.001		< 0.001	

Table 7. Effect of rutile and antibiotics on dopamine and serotonin.

Group	DOPAMINE % (Increase with Rutile)		DOPAMINE % (Decrease with Doxy+Cipro)		5 HT % change (Increase with Rutile)		5 HT % change (Decrease with Doxy+Cipro)	
	Mean	±SD	Mean	±SD	Mean	±SD	Mean	±SD
Normal	4.41	0.15	18.63	0.12	4.34	0.15	18.24	0.37
DM	24.10	1.61	65.78	4.43	22.73	2.46	65.87	4.35
CVA	23.43	1.57	66.30	3.57	22.98	1.50	65.13	4.87
CAD	23.70	1.75	68.06	3.52	23.81	1.49	64.89	6.01
F value	403.394		680.284		348.867		364.999	
P value	< 0.001		< 0.001		< 0.001		< 0.001	

Discussion

There was increase in cytochrome F420 indicating archaeal growth. The archaea can synthesize and use cholesterol as a carbon and energy source. 6, 14 The archaeal origin of the enzyme activities was indicated by antibiotic induced suppression. The study indicates the presence of actinide based archaea with an alternate actinide based enzymes or metalloenzymes in the system as indicated by rutile induced increase in enzyme activities. 15 There was also an increase in archaeal HMG CoA reductase activity indicating increased cholesterol synthesis by the archaeal mevalonate pathway. The archaeal beta hydroxyl steroid dehydrogenase activity indicating digoxin synthesis and archaeal cholesterol hydroxylase activity indicating bile acid synthesis were increased. 8 The archaeal cholesterol oxidase activity was increased resulting in generation of pyruvate and hydrogen peroxide.¹⁴ The pyruvate gets converted to glutamate and ammonia by the GABA shunt pathway. The archaeal aromatization of cholesterol generating PAH, serotonin and dopamine was also detected. 16 The archaeal glycolytic hexokinase activity and archaeal extracellular ATP synthase activity were increased. The archaea can undergo magnetite and calcium carbonate mineralization and can exist as calcified nanoforms.¹⁷ There was an increase in free RNA indicating self replicating RNA viroids and free DNA indicating generation of viroid complementary DNA strands by archaeal reverse transcriptase activity. The actinides modulate RNA folding and catalyse its ribozymal action. Digoxin can cut and paste the viroidal strands by modulating RNA splicing generating RNA viroidal diversity. The viroids are evolutionarily escaped archaeal group I introns which have retrotransposition and self splicing qualities.¹⁸ Archaeal pyruvate can produce histone deacetylase inhibition resulting in endogenous retroviral (HERV) reverse transcriptase and integrase expression. This can integrate the RNA viroidal complementary DNA into the noncoding region of eukaryotic noncoding DNA using HERV integrase as has

been described for borna and ebola viruses. 19 The noncoding DNA is lengthened by integrating RNA viroidal complementary DNA with the integration going on as a continuing event. The archaea genome can also get integrated into human genome using integrase as has been described for trypanosomes.²⁰ The integrated viroids and archaea can undergo vertical transmission and can exist as genomic parasites. 19, 20 This increases the length and alters the grammar of the noncoding region producing memes or memory of acquired characters as well as eukaryotic speciation and individuality. ²¹ The viroidal complementary DNA can function as jumping genes producing a dynamic genome important in storage of synaptic information, HLA gene expression and developmental gene expression. The RNA viroids can regulate mrna function by RNA interference. 18 The phenomena of RNA interference can modulate T-cell and B-cell function, insulin signaling lipid metabolism, cell growth and differentiation, apoptosis, neuronal transmission and euchromatin / heterochromatin expression. This contributes to the pathogenesis of metabolic syndrome - type 2 diabetes mellitus, CVA and CAD.

Archaea and RNA viroid can bind the TLR receptor induce NFKB producing immune activation and cytokine TNF alpha secretion. The archaeal DXP and mevalonate pathway metabolites can bind γδ TCR and digoxin induced calcium signaling can activate NFKB producing chronic immune activation.^{4, 23} The archaea and viroid induced chronic immune activation and generation of superantigens can lead on to autoimmunity in metabolic syndrome X, CVA and CAD. Archaea, viroids and digoxin can induce the host AKT PI3K, AMPK, HIF alpha and NFKB producing the Warburg metabolic phenotype.²⁴ The increased glycolytic hexokinase activity, decrease in blood ATP, leakage of cytochrome C, increase in serum pyruvate and decrease in acetyl CoA indicates the generation of the Warburg phenotype. There is induction of glycolysis, inhibition of PDH activity and mitochondrial dysfunction resulting in inefficient

energetics and metabolic syndrome. The archaea and viroid generated cytokines can lead to TNF alpha induced insulin resistance and Metabolic Syndrome type 2 diabetes mellitus with CAD and CVA. The accumulated pyruvate enters the GABA shunt pathway and is converted to citrate which is acted upon by citrate lyase and converted to acetyl CoA, used for cholesterol synthesis.²⁴ The pyruvate can be converted to glutamate and ammonia which is oxidised by archaea for energy needs. The increased cholesterol substrate leads to increased archaeal growth and digoxin synthesis leading to metabolic channeling to the mevalonate pathway. The archaeal bile acids are steroidal hormones which can bind GPCR and modulate D₂ regulating the conversion of T₄ to T₃ which activates uncoupling proteins, can activate NRF1/2 inducing NQO1, GST, HOI reducing redox stress, can bind FXR regulating insulin receptor sensitivity and bind PXR inducing the bile acid shunt pathway of cholesterol detoxification.²⁵ The archaea and viroid induced monocyte activation and Warburg phenotype induced increased cholesterol synthesis leads to atherogenesis. The RNA viroids can recombine with HERV sequences and get encapsulated in microvesicles contributing to the retroviral state. The prion protein conformation is modulated by RNA viroid binding producing Prion Disease. Prion proteins and HERV sequences are related to metabolic syndrome - type 2 diabetes mellitus, CVA and CAD. Thus the archaea and the viroids are crucial to the etiopathogenesis of metabolic syndrome - type 2 diabetes mellitus, CVA and CAD.

References

- [1] Hanold D., Randies, J. W. (1991). Coconut cadang-cadang disease and its viroid agent, *Plant Disease*, 75, 330-335.
- [2] Valiathan M. S., Somers, K., Kartha, C. C. (1993). *Endomyocardial Fibrosis*. Delhi: Oxford University Press.

- Global Warming, Archaea and Viroid Induced Symbiotic Human Evolution Metabolic Change Metabolic Syndrome X
- [3] Edwin B. T., Mohankumaran, C. (2007). Kerala wilt disease phytoplasma: Phylogenetic analysis and identification of a vector, *Proutista moesta*, *Physiological and Molecular Plant Pathology*, 71(1-3), 41-47.
- [4] Kurup R., Kurup, P. A. (2009). *Hypothalamic digoxin, cerebral dominance and brain function in health and diseases*. New York: Nova Science Publishers.
- [5] Eckburg P. B., Lepp, P. W., Relman, D. A. (2003). Archaea and their potential role in human disease, *Infect Immun*, 71, 591-596.
- [6] Smit A., Mushegian, A. (2000). Biosynthesis of isoprenoids via mevalonate in Archaea: the lost pathway, *Genome Res*, 10(10), 1468-84.
- [7] Adam Z. (2007). Actinides and Life's Origins, Astrobiology, 7, 6-10.
- [8] Schoner W. (2002). Endogenous cardiac glycosides, a new class of steroid hormones, *Eur J Biochem*, 269, 2440-2448.
- [9] Davies P. C. W., Benner, S. A., Cleland, C. E., Lineweaver, C. H., McKay, C. P., Wolfe-Simon, F. (2009). Signatures of a Shadow Biosphere, *Astrobiology*, 10, 241-249.
- [10] Richmond W. (1973). Preparation and properties of a cholesterol oxidase from nocardia species and its application to the enzymatic assay of total cholesterol in serum, *Clin Chem*, 19, 1350-1356.
- [11] Snell E. D., Snell, C. T. (1961). *Colorimetric Methods of Analysis*. Vol 3A. New York: Van Nostrand.
- [12] Glick D. (1971). *Methods of Biochemical Analysis*. Vol 5. New York: Interscience Publishers.
- [13] Colowick, Kaplan, N. O. (1955). *Methods in Enzymology*. Vol 2. New York: Academic Press.
- [14] Van der Geize R., Yam, K., Heuser, T., Wilbrink, M. H., Hara, H., Anderton, M. C. (2007). A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages, *Proc Natl Acad Sci USA*, 104(6), 1947-52.
- [15] Francis A. J. (1998). Biotransformation of uranium and other actinides in radioactive wastes, *Journal of Alloys and Compounds*, 271(273), 78-84.

- [16] Probian C., Wülfing, A., Harder, J. (2003). Anaerobic mineralization of quaternary carbon atoms: Isolation of denitrifying bacteria on pivalic acid (2,2-Dimethylpropionic acid), *Applied and Environmental Microbiology*, 69(3), 1866-1870.
- [17] Vainshtein M., Suzina, N., Kudryashova, E., Ariskina, E. (2002). New Magnet-Sensitive Structures in Bacterial and Archaeal Cells, *Biol Cell*, 94(1), 29-35.
- [18] Tsagris E. M., de Alba, A. E., Gozmanova, M., Kalantidis, K. (2008). Viroids, *Cell Microbiol*, 10, 2168.
- [19] Horie M., Honda, T., Suzuki, Y., Kobayashi, Y., Daito, T., Oshida, T. (2010). Endogenous non-retroviral RNA virus elements in mammalian genomes, *Nature*, 463, 84-87.
- [20] Hecht M., Nitz, N., Araujo, P., Sousa, A., Rosa, A., Gomes, D. (2010). Genes from Chagas parasite can transfer to humans and be passed on to children. Inheritance of DNA Transferred from American Trypanosomes to Human Hosts, *PLoS ONE*, 5, 2-10.
- [21] Flam F. (1994). Hints of a language in junk DNA, Science, 266, 1320.
- [22] Lockwood, M. (1989). Mind, Brain and the Quantum. Oxford: B. Blackwell.
- [23] Eberl M., Hintz, M., Reichenberg, A., Kollas, A., Wiesner, J., Jomaa, H. (2010). Microbial isoprenoid biosynthesis and human γδ T cell activation, *FEBS Letters*, 544(1), 4-10.
- [24] Wallace D. C. (2005). Mitochondria and Cancer: Warburg Addressed, *Cold Spring Harbor Symposia on Quantitative Biology*, 70, 363-374.
- [25] Lefebvre P., Cariou, B., Lien, F., Kuipers, F., Staels, B. (2009). Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation, *Physiol Rev*, 89(1), 147-191.
- [26] Wächtershäuser, G. (1988). Before enzymes and templates: theory of surface metabolism. *Microbiol Rev*, 52(4), 452-84.
- [27] Russell, M. J., Martin W. (2004). The rocky roots of the acetyl-CoA Pathway. *Trends in Biochemical Sciences*, 29(7).

- Global Warming, Archaea and Viroid Induced Symbiotic Human Evolution Metabolic Change Metabolic Syndrome X
- [28] Margulis, L. (1996). Archaeal-eubacterial mergers in the origin of Eukarya: phylogenetic classification of life. *Proc Natl Acad Sci USA*, 93, 1071-1076.

Archaeal Digoxin Mediated Model for Metabolic Syndrome X

Introduction

Global warming induces a genomic change in humans. Global warming induces endosymbiotic archaeal and RNA viroidal growth. The porphyrins form a template for the formation of RNA viroids, DNA viroids, prions, isoprenoids and polysaccharides. They can symbiose together to form primitive archaea. The archaea can further induce HIF alpha, aldose reductose and fructolysis resulting in further porphyrinogenesis and archaeal self replication. The primitive archaeal DNA is integrated along with RNA viroids which are converted to their corresponding DNA by the action of redox stress induced HERV reverse transcriptase into the human genome by the redox stress induced HERV integrase. The archaeal DNA sequences that are integrated into the human genome forms endogenous archaeal human genomic sequences akin to HERV sequences and can function as jumping genes regulating genomic DNA flexibility. The integrated endogenous genomic archaeal sequences can get expressed in the presence of redox stress forming endosymbiotic archaeal particles which can function as a new organelle called the archaeaons. The archaeaon can express the fructolytic pathway constituting an organelle called the fructosome, cholesterol catabolic pathway and digoxin synthetic forming an organelle called the steroidelle, the shikimic acid pathway forming an organelle called the neurotransminoid, antioxidant vitamin E and vitamin C synthetic organelle called the vitaminocyte as well as the glycosaminoglycan synthetic organelle called glycosaminoglycoid. The archaeaon secreting RNA viroids is called the viroidelle.

The increase in endogenous EDLF, a potent inhibitor of membrane Na⁺-K⁺ ATPase, can decrease this enzyme activity. The results showed increased endogenous EDLF synthesis as evidenced by increased HMG CoA reductase activity, which functions as the rate limiting step of the isoprenoid pathway.

Studies in our laboratory have demonstrated that EDLF is synthesized by the isoprenoid pathway. The endosymbiotic archaeal sequences in the human genome get expressed by redox stress and osmotic stress of global warming. This results in induction of HIF alpha which will upregulate fructolysis and glycolysis. In the setting of redox stress all glucose gets converted to fructose by the induction of enzymes aldose reductase and sorbitol dehydrogenase. Aldose reductase converts glucose to sorbitol and sorbitol dehydrogenase converts sorbitol to fructose. Since fructose is preferentially phosphorylated by ketohexokinases the cell is depleted of ATP and glucose phosphorylation comes to a halt. Fructose becomes the dominant sugar that is metabolized by fructolysis in expressed archaeal particles in the cell functioning as organelle called fructosoids. The fructose is phosphorylated to fructose 1-phosphate which is acted upon by aldolase B which converts it into glyceraldehyde 3-phosphate and dihydroxy acetone phosphate. Glyceraldehyde 3-phosphate is D1,3-biphosphoglycerate which is then converted converted to 3-phosphoglycerate. The 3-phosphglycerate is converted to 2-phosphoglycerate. 2-phosphoglycerate is converted to phosphoenol pyruvate by the enzyme enolase. Phosphoenol pyruvate is converted to pyruvate by the enzyme pyruvic kinase. The archaeaon induces HIF alpha which upregulates fructolysis and glycolysis but inhibits pyruvate dehydrogenase. The forward metabolism of pyruvate is stopped. The dephosphorylation of phosphoenol pyruvate is inhibited in the setting of pyruvic kinase inhibition. Phosphoenol pyruvate enters the shikimic acid pathway where it is converted to chorismate. The shikimic acid is synthesized by a pathway starting from glyceraldhyde 3-phosphate. Glyceraldehyde 3-phosphate combines with the pentose phosphate pathway metabolite sedoheptulose 7-phosphate which is converted to erythrose 4-phosphate. The pentose phosphate pathway is upregulated in the presence of the suppression of glycolytic pathway. Erythrose 4-phosphate combines with

phosphoenol pyruvate to generate shikimic acid. Shikimic acid combines with another molecule of phosphoenol pyruvate to generate chorismate. The chorismate is converted to prephenic acid and then to parahydroxy phenyl pyruvic acid. Parahydroxy phenyl pyruvic acid is converted to tyrosine and tryptophan as well as neuroactive alkaloids. The shikimic acid pathway is structured in expressed archaeaon organelle called the neurotransminoid. The fructolytic intermediates glyceraldehydes 3-phosphate and pyruvate are the starting points of the DXP pathway of cholesterol synthesis. Glyceraldehyde 3-phosphate combines with pyruvate to form 1-deoxy D-xylulose phosphate (DOXP) which is then converted to 2C methyl erythritol phosphate. 2C methyl erythritol phosphate can be synthesized from erythrose 4-phosphate a metabolite of the shikimic acid pathway. DXP combines with MEP to form isopentenyl pyrophosphate which is converted to cholesterol. Cholesterol is catabolised by archaeal cholesterol oxidases to generate digoxin. The digoxin sugars digitoxose and rhamnose are synthesized by the upregulated pentose phosphate pathway. Glycolytic suppression leads to upregulation of the pentose phosphate pathway. The expressed archaeaon organelle concerned with cholesterol catabolism and digoxin synthesis is called the steroidelle. The suppression of glycolysis and stimulation of fructolysis results in upregulation of the hexosamine pathway. Fructose is converted to fructose 6-phosphate by ketohexokinases. The fructose 6-phosphate is converted to glucosamine 6-phosphate by the action of glutamine fructose 6-phosphate amidotransferase (GFAT). Glucosamine 6-phosphate is converted to UDP N-acetyl glucosamine which is then converted to N-acetyl glucosamine and various amino sugars. UDP glucose is converted to UDP D-glucuronic acid. UDP D-glucuronic acid is converted to glucuronic acid. This forms the uronic acid synthetic pathway. Uronic acids and hexosamines form repeating units of glycosaminoglycans. In the setting of glycolytic suppression and fructolytic metabolism fructolysis

leads to increase synthesis of hexosamines and GAG synthesis. The GAG synthesizing archaeaon particles are called the glycosaminoglycoids. The expressed archaeaon particles are capable of synthesizing antioxidant vitamin C and E. The UDP D-glucose is converted to UDP D-glucuronic acid. UDP D-glucuronic acid is converted to D-glucuronic acid. D-glucuronic acid is converted to L-gulonate by enzyme aldoketoreductases. L-gulonate is converted to L-gulonolactone by lactonase. L-gulonolactone is converted to ascorbic acid by the action of archaeal L-gulo oxidase. The vitamin E is synthesized from shikimate which is converted to tyrosine and then to parahydroxy phenyl pyruvic acid. Parahydroxy phenyl pyruvic acid is converted to homogentisate. Homogentisate is converted to 2-methyl 6-phytyl benzoquinone which is converted to alpha tocopherol. 2-methyl 6-phytyl benzoquinone is converted to 2,3-methyl 6-phytyl benzoquinone and gamma tocopherol. Vitamin E can also be synthesized by the DXP pathway. Glyceraldehyde 3-phosphate and pyruvate combined to form 1-deoxy D-xylulose 5-phosphate which is converted to 3-isopentenyl pyrophosphate. 3-isopentenyl pyrophosphate and dimethyl allyl pyrophosphate combined to form 2-methyl 6-phytyl benzoquinone which is converted to tocopherols. The ubiquinone another important membrane antioxidant and part of the mitochondrial electron transport chain is synthesized by the shikimic acid pathway and DXP pathway. The isoprenoid moiety of ubiquinone is contributed from the DXP pathway and the rest of it by tyrosine catabolism. The tyrosine is generated by the shikimic acid pathway. The archaeaon particles concerned with the synthesis of vitamin C, vitamin E and ubiquinone which are all antioxidants are called the vitaminocyte.

Global warming can lead to osmotic stress consequent to dehydration. The increase in actinidic archaeal growth leads to cholesterol catabolism and digoxin synthesis. Digoxin produces membrane sodium potassium ATPase inhibition and increase in intracellular calcium producing mitochondrial dysfunction. This

results in oxidative stress. The oxidative stress and osmotic stress can induce the enzyme aldose reductase which converts glucose to fructose. Fructose has got a low km value for ketokinase as compared to glucose. Therefore fructose gets phosphorylated more to fructose phosphate and the cell is depleted of ATP. The cell depletion of ATP leads to oxidative stress and chronic inflammation consequent to induction of NFKB. Oxidative stress can open the mitochondrial PT pore producing release of cyto C and activation of the caspase cascade of cell death. The fructose phosphate can enter the pentose phosphate pathway synthesizing ribose and nucleic acid. The depletion of cellular ATP results in generation of AMP and ADP which are acted upon by deaminases causing hyperuricemia. Uric acid can produce endothelial dysfunction and vascular disease. Uric acid can also produce mitochondrial dysfunction. The fructose phosphate can enter the glucosamine pathway synthesizing GAG and producing mucopolysaccharide accumulation. Fructose can fructosylate proteins making them antigenic and producing an autoimmune response. This can lead to global warming related metabolic syndrome X.

The components of syndrome X include: non-insulin dependent diabetes mellitus, hyperinsulinism, insulin resistance, central obesity, dyslipidemia marked hypertriglyceridemia and low HDL levels. accelerated atherosclerosis leading to coronary artery disease and stroke, hypertension and a positive family history. The isoprenoid pathway produces four crucial metabolites important in cellular function - digoxin, an endogenous inhibitor of membrane Na+-K+ ATPase ubiquinone, a component of the mitochondrial electron transport chain, dolichol, important in N-glycosylation of proteins and cholesterol, a component of the cellular membrane. Endosymbiotic archaea can synthesize digoxin by cholesterol catabolism. Elevated levels of digoxin and the related increased Na⁺-Ca++ exchange in the vascular smooth muscle cell has been reported to cause the hypertension associated with the syndrome. The

inhibition of membrane Na+-K+ ATPase by digoxin has been reported to cause hypomagnesemia, a risk factor in syndrome X. Magnesium deficiency has been associated with insulin resistance. Hypomagnesemia can also affect the metabolism of glycosaminoglycans and glycolipids and changes in the dolichol levels can alter N-glycosylation of protein. Changes in basement membrane heparin sulphate have been implicated in the microangiopathy of syndrome X and elevated levels of sialic acid, and acute phase response marker has also been documented in syndrome X. The acute phase response plays a role in the genesis of the vascular disease in syndrome X. Archaeal digoxin induced altered to calcium/magnesium ratios and changes in ubiquinone can affect mitochondrial function and lead to free radical generation. Free radicals can contribute to oxidised LDL important in the pathogenesis of atherosclerosis in syndrome X. Alteration in baroreceptor sensitivity and sympatho-vagal balance has been reported to lead to vasospasm in syndrome X. Archaeal digoxin can alter amino acid and neurotransmitter transport. The products of the isoprenoid pathway cholesterol, ubiquinone, dolichol and digoxin can affect membrane structure and function, with consequent endothelial dysfunction important in syndrome X.

The study was undertaken to assess, (1) the isoprenoid pathway, (2) The tryptophan/tyrosine catabolic patterns, (3) Glycoconjugate metabolism, (4) RBC membrane changes as a reflection of cell membrane change, and (5) Free radical metabolism. A hypothesis implicating membrane Na⁺-K⁺ ATPase inhibition consequent to increased digoxin secretion as pivotal to all these changes occurring in syndrome X is also presented.

Results

(1) The activity of HMG CoA reductase and the concentration of digoxin and dolichol were increased in syndrome X with multiple lacunar state. The concentration of serum ubiquinone, the activity of erythrocyte membrane

Global Warming, Archaea and Viroid Induced Symbiotic Human Evolution - Metabolic Change - Metabolic Syndrome X

Na⁺-K⁺ ATPase and serum magnesium were decreased. The concentration of serum tryptophan, quinolinic acid and serotonin was increased in the plasma of these patients while that of tyrosine, dopamine and noradrenaline was decreased. Nicotine and strychnine were detected in the plasma of syndrome X with multiple lacunar state patients but were not detectable in the control serum. Morphine was not detected in the plasma of these patients.

- (2) The concentration of total glycosaminoglycans (GAG) and different GAG fractions, total hexose, fucose and sialic acid content of serum glycoproteins and the concentration of gangliosides, glycosyl-diglycerides and sulphatides showed significant increase in the serum of syndrome X with multiple lacunar state patients. The activity of glycosaminoglycan (GAG) degrading enzymes and glycohydrolases increased in the serum of syndrome X with multiple lacunar state. The concentration of total GAG and hexose and fucose residues of glycoproteins in the RBC membrane decreased significantly in syndrome X with multiple lacunar state. The concentration of RBC membrane cholesterol increased while that of phospholipids decreased resulting in an increased cholesterol: phospholipid ratio.
- (3) The activity of superoxide dismutase (SOD), catalase, glutathione reductase and glutathione peroxidase in the erythrocytes decreased significantly in syndrome X with multiple lacunar state. The concentration of malondialdehyde (MDA), hydroperoxides, conjugated dienes and nitric oxide (NO) increased significantly while the concentration of reduced glutathione decreased.

56

Discussion

Archaeal Digoxin and Membrane Na⁺-K⁺ ATPase Inhibition in Relation to Metabolic Syndrome X

The archaeaon steroidelle DXP pathway and the upregulated pentose phosphate pathway contribute to digoxin synthesis. The increase in plasma digoxin and dolichol in syndrome X is a consequence of increased operation of the isoprenoid pathway as is evidenced from the increase in the activity of HMG CoA reductase. Incorporation of ¹⁴C-acetate into digoxin in the rat brain has been previously shown by us indicating its synthesis in mammals from acetyl CoA and by the isoprenoid pathway. The observed inhibition of RBC membrane Na+-K+ ATPase is a consequence of increased digoxin. The inhibition Na+-K+ ATPase by digoxin is known to cause increase in intracellular Ca⁺⁺ and a decrease in intracellular Mg⁺⁺. Low intracellular Mg⁺⁺ and high intracellular Ca⁺⁺ consequent of Na⁺-K⁺ ATPase inhibition appear to be crucial to the pathophysiology of syndrome X with multiple lacunar state. The intracellular alteration of Ca⁺⁺ and Mg⁺⁺ can affect diverse cellular processes. A large variety of calcium dependent cellular processes are activated by increase in intracellular calcium and several vital processes which require Mg++ are downgraded in the presence of inadequate Mg⁺⁺ levels.

Inhibition of membrane Na⁺-K⁺ ATPase can also explain the pathogenesis of syndrome X in another way. Magnesium is required as a co-factor for cell membrane glucose transport. Hypomagnesemia consequent to membrane Na⁺-K⁺ ATPase inhibition can lead to defective cell membrane transport of glucose. Increased intracellular calcium can also lead to the activation of the calcineurin signal transduction pathway resulting in T-cell activation and increased levels of TNF alpha, contributing to insulin resistance. Increased intracellular calcium can activate the G-protein coupled signal transduction of the contrainsulin hormones (growth hormone and glucagon) leading to

hyperglycemia. Increase in intracellular calcium can activate the G-protein coupled angiotensin receptor producing hypertension and the G protein coupled thrombin receptor and platelet activating factor receptor producing the thrombosis observed in syndrome X with multiple lacunar state. Decreased intracellular magnesium can lead to increased thrombin and ADP/collagen induced platelet aggregation. Decrease in intracellular magnesium can block the phosphorylation reactions involved in protein tyrosine kinase receptor activity leading to insulin resistance. Decrease in intracellular magnesium can lead to inhibition of glycolysis causing defective glucose utilization and hyperglycemia. Increase in intracellular calcium can open the mitochondrial PT pore, disrupt the hydrogen gradient across the inner membrane and block mitochondrial oxidative phosphorylation. Intracellular magnesium deficiency can also lead to an ATP synthase defect. This leads to defective glucose utilisation. Increase in beta cell calcium can contribute to increased insulin release from beta cells and hyperinsulinemia. Hypomagnesemia has been reported to markedly increase glucose stimulated insulin secretion by the perfused pancreas. Na⁺-K⁺ ATPase inhibition related increased smooth muscle calcium and decreased magnesium can contribute to vasospasm and ischemia observed in stroke and CAD. Na⁺-K⁺ ATPase inhibition induced hypomagnesemia related altered glycoprotein and glycosaminoglycan synthesis can contribute to the microangiopathy and macroangiopathy observed in syndrome X. Decreased intracellular magnesium can produce an endothelial mitochondrial dysfunction, increased membrane fluidity of endothelium and increased permeability of endothelial cells to lipoproteins. Increased intracellular calcium within the endothelial cell leads to fragmentation of the elastic membrane and calcification. Increased intracellular calcium can produce configuration change in arterial elastin, exposing the elastin's hydrophobic sites resulting in increased cholesterol absorption. Increased calcium within the arterial wall alters elastin synthesis, turnover and

composition. Decreased intracellular magnesium blocks the activity of delta-6-desaturase resulting in increased levels of oleic acid and linoleic acid and decreased levels of arachidonic acid and stearic acid. This contributes to the retinopathy in syndrome X with multiple lacunar state. Decreased intracellular magnesium can produce dysfunction of lipoprotein lipase producing defective catabolism of triglyceride rich lipoproteins and hypertriglyceridemia. In hypomagnesemia, lecithin cholesterol acyl transferase (LCAT) is defective and there is reduced formation of cholesterol esters in HDL. This results in reduced HDL cholesterol described in syndrome X with multiple lacunar state. Magnesium deficiency has been reported to increase LDL cholesterol levels also.

Archaeal Digoxin and Regulation of Neurotransmitter Synthesis and Function in Relation to Metabolic Syndrome X

The archaeaon neurotransminoid shikimic acid pathway contributes to tryptophan and tyrosine synthesis and catabolism generating neurotransmitters and neuroactive alkaloids. Digoxin, apart from affecting cation transport via inhibition of membrane Na+-K+ ATPase, is also reported to influence the transport of various metabolites across cellular membranes, which includes amino acids and various neurotransmitters. Two of the amino acids are important in this respect, tryptophan, a precursor for strychnine and nicotine and tyrosine a precursor for morphine. Digoxin is reported to increase tryptophan transport while decreasing tyrosine transport. The increase in tryptophan and its catabolites - quinolinic acid and serotonin and the decrease in tyrosine and its catabolites - dopamine and norepinephrine now observed in patients with syndrome X may be a reflection of this effect of digoxin on the transport of these amino acids. Serum of syndrome X with multiple lacunar state showed the presence of strychnine and nicotine, which in a previous communication by us were reported in the brain of rats fed with tryptophan. Morphine could not be


detected in the serum of these patients. The decrease in membrane Na⁺-K⁺ ATPase activity in syndrome X with multiple lacunar state could also be due to the fact that the hyperpolarising neurotransmitters (dopamine, morphine and noradrenaline derived from tyrosine) are reduced and the depolarising neuroactive compounds (serotonine, strychnine, nicotine and quinolinic acid derived from tryptophan) are increased. Thus the schizoid neurotransmitter pattern of reduced dopamine, noradrenaline and morphine and increased serotonin, strychnine and nicotine is also observed by us in syndrome X with multiple lacunar state. The increase now observed in quinolinic acid, an NMDA agonist, can contribute to glutamate excitotoxicity, as in the schizoid state. The elevated levels of serotonin and strychnine arc also known to cause an upregulated excitatory NMDA transmission.

Archaeal Digoxin and Regulation of Golgi Body / Lysosomal Function in Relation to Metabolic Syndrome X

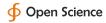
The glycosaminoglycoid and fructosoid archaeaon contributes glycoconjugate synthesis and catabolism by the process of fructolysis. The magnesium depletion can affect the metabolism of glycosaminoglycans, glycoproteins and glycolipids. The elevation in the level of dolichol may suggest its increased availability for N-glycosylation of proteins. Magnesium deficiency can lead to defective metabolism of sphinganine producing its accumulation which may lead to increased cerebroside and ganglioside synthesis. In magnesium deficiency the glycolysis, citric acid cycle and oxidative phosphorylation are blocked and more glucose 6-phosphate is channelled for the synthesis of glycosaminoglycans (GAG). The results show an increase in the concentration of serum total GAG and individuals GAG fractions, glycolipids and carbohydrate components of glycoproteins (hexcose, fucose and sialic acid) in syndrome X with multiple lacunar state. The increase in the carbohydrate components total

hexose, fucose and sialic acid in syndrome X with multiple lacunar state was not to the same extent, suggesting a qualitative change in glycoprotein structure. The activity of GAG degrading enzymes and that of glycohydrolases showed significant increase in the serum of syndrome X with multiple lacunar slate. Intracellular magnesium deficiency also results in defective ubiquitin dependent proteolytic processing of glycoconjugates as it requires magnesium for its function. The increase in the activity of glycohydrolases and GAG degrading enzymes could be due to reduced lysosomal stability and consequent leakage of lysosomal enzymes into the serum. The increase in the concentration of carbohydrate components of glycoproteins and GAG in spite of increased activity of many glycohydrolases, may be due to their possible resistance to cleavage by glycohydrolases consequent to qualitative change in their structure. Proteoglycan complexes formed in the presence of altered calcium/magnesium ratios intracellularly may be structurally abnormal and resistant to lysosomal enzymes and may accumulate. Increased levels of sialic acid and ICAM-1 have been reported in syndrome X with multiple lacunar state, suggesting changes in glycoprotein metabolism. Increase in basement membrane heparan sulphate can contribute to the microangiopathy of syndrome X. Alteration in arterial wall glycoprotein and GAG has been described in arteriosclerosis and atherosclerosis. Increased glycosaminoglycans in the arterial wall can lead to increased interaction between GAG and lipoproteins contributing to atherogenesis. Thus the alteration in glycoproteins and GAG can contribute to microangiopathy macroangiopathy of syndrome X with multiple lacunar state. A number of fucose and sialic acids containing natural ligands are involved in adhesion of the lymphocyte, producing leukocyte trafficking and extravasation in to the perivascular space. This could lead to the acute phase response in syndrome X with multiple lacunar state and immune mediated neuropathies described in syndrome X with multiple lacunar state.

Archaeal Digoxin and Alteration in Membrane Structure and Membrane Formation in Relation to Metabolic Syndrome X

The archaeaon steroidelle, glycosaminoglycoid and fructosoid contribute to cell membrane formation synthesizing cholesterol by the DXP pathway and glycosaminoglycans by fructolysis. The alteration in the isoprenoid pathway specifically cholesterol as well as changes in glycoproteins and GAG can affect cellular membranes. The upregulation of the isoprenoid pathway can lead to increased cholesterol synthesis and magnesium deficiency can inhibit phospholipid synthesis. The glycoproteins, GAG and glycolipids of the cellular membrane are formed in the endoplasmic reticulum, which is then budded off as a vesicle which fuses with the golgi complex. The glycoconjugates are then transported via the golgi channel and the golgi vesicle fuses with the cell membrane. This trafficking depends upon GTPases and lipid kinases which are crucially dependent on magnesium and are defective in magnesium deficiency. The glycoconjugate are defectively incorporated into the membrane in syndrome X. The change in membrane structure produced by alteration in glycoconjugates and the cholesterol: phospholipid ratio can produce changes in the conformation of Na⁺-K⁺ ATPase resulting in further membrane Na⁺-K⁺ ATPase inhibition. The alteration in cell membrane structure can result in defective transport of glucose across cell membranes due to alteration in the configuration of the glucose transporter. The same changes can affect the structure of the organelle membrane. This results in defective lysosomal stability and leakage of glycohydrolases and GAG degrading enzymes into the serum. Defective peroxisomal membranes lead to catalase dysfunction which has been documented in syndrome X with multiple lacunar state. Alteration in the endothelial cell membrane can contribute to the endothelial dysfunction described in the vascular disease in syndrome X.

Archaeal Digoxin and Mitochondrial Dysfunction in Relation to Metabolic Syndrome X


The archaeaon vitaminocyte contributes to the synthesis of ubiquinone and mitochondrial electron transport chain function. The mitochondrial function related free radical generation is regulated by the archaeaon vitaminocyte synthesized tocopherol and ascorbic acid. The concentration of ubiquinone decreased significantly in syndrome X with multiple lacunar state which may be the result of low tyrosine levels, consequent to digoxin's effect in preferentially promoting tryptophan transport over tyrosine. The aromatic ring portion of ubiquinone is derived from tyrosine. Ubiquinone, which is an important component of the mitochondrial electron transport chain, is a membrane antioxidant and contributes to free radical scavenging. The increase in intracellular calcium can open up the mitochondrial PT pore causing a collapse of the hydrogen gradient across the inner membrane and uncoupling of the respiratory chain. Intracellular magnesium deficiency can lead to a defect in the function of ATP synthase. All these lead to defects in mitochondrial oxidative phosphorylation, incomplete reduction of oxygen and generation of the superoxide ion which produces lipid peroxidation. Ubiquinone deficiency also leads to reduced free radical scavenging. The increase in intracellular calcium may lead to increased generation of NO by inducing the enzyme nitric oxide synthase which combines with the superoxide radical to form peroxynitrite. Increased calcium also can activate phospholipase A2 resulting in increased generation of arachidonic acid which can undergo increased lipid peroxidation. Increased generation of free radicals like the superoxide ion and hydroxyl radical can produce lipid peroxidation and cell membrane damage which can further inactivate Na⁺-K⁺ ATPase, triggering the cycle of free radical generation once again. There was increase in lipid peroxidation with decreased antioxidant protection as indicated by the decrease in ubiquinone and reduced glutathione in

syndrome X with multiple lacunar state. The activity of free radical scavenging enzymes decreased in syndrome X with multiple lacunar state suggesting reduced free radical scavenging. Mitochondrial dysfunction related free radical generation has been implicated in the pathogenesis of syndrome X with multiple lacunar state and the vascular disease described in the syndrome. A defect in mitochondrial genome has been described in certain cases of syndrome X. Increased free radical generation can result in the formation of oxidised LDL which is atherogenic. Oxidised LDL is toxic to vascular endothelium and the macrophage. The proteolytic enzymes released from necrotic macrophages can alter the structural integrity of fibrous plaque and rupture the plaque. In addition as has already been described, the lysosomal stability is reduced in NIDDM consequent to an altered lysosomal membrane. This results in leakage of lysosomal enzymes in to the arterial wall. This endothelial denudation by oxidised LDL triggers coronary and cerebral thrombosis.

References

[1] Kurup RK, Kurup PA. *Hypothalamic Digoxin, Cerebral Dominance and Brain Function in Health and Diseases*. New York: Nova Medical Books, 2009.

Archaeal Digoxin and Regulation of Body-Mass Index / Metabolic Pathways


Introduction

Global warming induces a genomic change in humans. Global warming induces endosymbiotic archaeal and RNA viroidal growth. The porphyrins form a template for the formation of RNA viroids, DNA viroids, prions, isoprenoids and polysaccharides. They can symbiose together to form primitive archaea. The archaea can further induce HIF alpha, aldose reductose and fructolysis resulting in further porphyrinogenesis and archaeal self replication. The primitive archaeal DNA is integrated along with RNA viroids which are converted to their corresponding DNA by the action of redox stress induced HERV reverse transcriptase into the human genome by the redox stress induced HERV integrase. The archaeal DNA sequences that are integrated into the human genome forms endogenous archaeal human genomic sequences akin to HERV sequences and can function as jumping genes regulating genomic DNA flexibility. The integrated endogenous genomic archaeal sequences can get expressed in the presence of redox stress forming endosymbiotic archaeal particles which can function as a new organelle called the archaeaons. The archaeaon can express the fructolytic pathway constituting an organelle called the fructosome, cholesterol catabolic pathway and digoxin synthetic forming an organelle called the steroidelle, the shikimic acid pathway forming an organelle called the neurotransminoid, antioxidant vitamin E and vitamin C synthetic organelle called the vitaminocyte as well as the glycosaminoglycan synthetic organelle called glycosaminoglycoid. The archaeaon secreting RNA viroids is called the viroidelle.

The increase in endogenous EDLF, a potent inhibitor of membrane Na⁺-K⁺ ATPase, can decrease this enzyme activity. The results showed increased endogenous EDLF synthesis as evidenced by increased HMG CoA reductase activity, which functions as the rate limiting step of the isoprenoid pathway.

Studies in our laboratory have demonstrated that EDLF is synthesized by the isoprenoid pathway. The endosymbiotic archaeal sequences in the human genome get expressed by redox stress and osmotic stress of global warming. This results in induction of HIF alpha which will upregulate fructolysis and glycolysis. In the setting of redox stress all glucose gets converted to fructose by the induction of enzymes aldose reductase and sorbitol dehydrogenase. Aldose reductase converts glucose to sorbitol and sorbitol dehydrogenase converts sorbitol to fructose. Since fructose is preferentially phosphorylated by ketohexokinases the cell is depleted of ATP and glucose phosphorylation comes to a halt. Fructose becomes the dominant sugar that is metabolized by fructolysis in expressed archaeal particles in the cell functioning as organelle called fructosoids. The fructose is phosphorylated to fructose 1-phosphate which is acted upon by aldolase B which converts it into glyceraldehyde 3-phosphate and dihydroxy acetone phosphate. Glyceraldehyde 3-phosphate is D1,3-biphosphoglycerate which is then converted to converted 3-phosphoglycerate. The 3-phosphglycerate is converted to 2-phosphoglycerate. 2-phosphoglycerate is converted to phosphoenol pyruvate by the enzyme enolase. Phosphoenol pyruvate is converted to pyruvate by the enzyme pyruvic kinase. The archaeaon induces HIF alpha which upregulates fructolysis and glycolysis but inhibits pyruvate dehydrogenase. The forward metabolism of pyruvate is stopped. The dephosphorylation of phosphoenol pyruvate is inhibited in the setting of pyruvic kinase inhibition. Phosphoenol pyruvate enters the shikimic acid pathway where it is converted to chorismate. The shikimic acid is synthesized by a pathway starting from glyceraldhyde 3-phosphate. Glyceraldehyde 3-phosphate combines with the pentose phosphate pathway metabolite sedoheptulose 7-phosphate which is converted to erythrose 4-phosphate. The pentose phosphate pathway is upregulated in the presence of the suppression of glycolytic pathway. Erythrose 4-phosphate combines with

phosphoenol pyruvate to generate shikimic acid. Shikimic acid combines with another molecule of phosphoenol pyruvate to generate chorismate. The chorismate is converted to prephenic acid and then to parahydroxy phenyl pyruvic acid. Parahydroxy phenyl pyruvic acid is converted to tyrosine and tryptophan as well as neuroactive alkaloids. The shikimic acid pathway is structured in expressed archaeaon organelle called the neurotransminoid. The fructolytic intermediates glyceraldehydes 3-phosphate and pyruvate are the starting points of the DXP pathway of cholesterol synthesis. Glyceraldehyde 3-phosphate combines with pyruvate to form 1-deoxy D-xylulose phosphate (DOXP) which is then converted to 2C methyl erythritol phosphate. 2C methyl erythritol phosphate can be synthesized from erythrose 4-phosphate a metabolite of the shikimic acid pathway. DXP combines with MEP to form isopentenyl pyrophosphate which is converted to cholesterol. Cholesterol is catabolized by archaeal cholesterol oxidases to generate digoxin. The digoxin sugars digitoxose and rhamnose are synthesized by the upregulated pentose phosphate pathway. Glycolytic suppression leads to upregulation of the pentose phosphate pathway. The expressed archaeaon organelle concerned with cholesterol catabolism and digoxin synthesis is called the steroidelle. The suppression of glycolysis and stimulation of fructolysis results in upregulation of the hexosamine pathway. Fructose is converted to fructose 6-phosphate by ketohexokinases. The fructose 6-phosphate is converted to glucosamine 6-phosphate by the action of glutamine fructose 6-phosphate amidotransferase (GFAT). Glucosamine 6-phosphate is converted to UDP N-acetyl glucosamine which is then converted to N-acetyl glucosamine and various amino sugars. UDP glucose is converted to UDP D-glucuronic acid. UDP D-glucuronic acid is converted to glucuronic acid. This forms the uronic acid synthetic pathway. Uronic acids and hexosamines form repeating units of glycosaminoglycans. In the setting of glycolytic suppression and fructolytic metabolism fructolysis

leads to increase synthesis of hexosamines and GAG synthesis. The GAG synthesizing archaeaon particles are called the glycosaminoglycoids. The expressed archaeaon particles are capable of synthesizing antioxidant vitamin C and E. The UDP D-glucose is converted to UDP D-glucuronic acid. UDP D-glucuronic acid is converted to D-glucuronic acid. D-glucuronic acid is converted to L-gulonate by enzyme aldoketoreductases. L-gulonate is converted to L-gulonolactone by lactonase. L-gulonolactone is converted to ascorbic acid by the action of archaeal L-gulo oxidase. The vitamin E is synthesized from shikimate which is converted to tyrosine and then to parahydroxy phenyl pyruvic acid. Parahydroxy phenyl pyruvic acid is converted to homogentisate. Homogentisate is converted to 2-methyl 6-phytyl benzoquinone which is converted to alpha tocopherol. 2-methyl 6-phytyl benzoquinone is converted to 2,3-methyl 6-phytyl benzoquinone and gamma tocopherol. Vitamin E can also be synthesized by the DXP pathway. Glyceraldehyde 3-phosphate and pyruvate combined to form 1-deoxy D-xylulose 5-phosphate which is converted to 3-isopentenyl pyrophosphate. 3-isopentenyl pyrophosphate and dimethyl allyl pyrophosphate combined to form 2-methyl 6-phytyl benzoquinone which is converted to tocopherols. The ubiquinone another important membrane antioxidant and part of the mitochondrial electron transport chain is synthesized by the shikimic acid pathway and DXP pathway. The isoprenoid moiety of ubiquinone is contributed from the DXP pathway and the rest of it by tyrosine catabolism. The tyrosine is generated by the shikimic acid pathway. The archaeaon particles concerned with the synthesis of vitamin C, vitamin E and ubiquinone which are all antioxidants are called the vitaminocyte.

Global warming can lead to osmotic stress consequent to dehydration. The increase in actinidic archaeal growth leads to cholesterol catabolism and digoxin synthesis. Digoxin produces membrane sodium potassium ATPase inhibition and increase in intracellular calcium producing mitochondrial dysfunction. This

70

results in oxidative stress. The oxidative stress and osmotic stress can induce the enzyme aldose reductase which converts glucose to fructose. Fructose has got a low km value for ketokinase as compared to glucose. Therefore fructose gets phosphorylated more to fructose phosphate and the cell is depleted of ATP. The cell depletion of ATP leads to oxidative stress and chronic inflammation consequent to induction of NFKB. Oxidative stress can open the mitochondrial PT pore producing release of cyto C and activation of the caspase cascade of cell death. The fructose phosphate can enter the pentose phosphate pathway synthesizing ribose and nucleic acid. The depletion of cellular ATP results in generation of AMP and ADP which are acted upon by deaminases causing hyperuricemia. Uric acid can produce endothelial dysfunction and vascular disease. Uric acid can also produce mitochondrial dysfunction. The fructose phosphate can enter the glucosamine pathway synthesizing GAG and producing mucopolysaccharide accumulation. Fructose can fructosylate proteins making them antigenic and producing an autoimmune response. This can lead to global warming related metabolic syndrome X.

Metabolic syndrome X is associated with trunkal obesity and high body-mass index. Previous reports have shown that there is increased secretion of an endogenous digoxin like factor (EDLF) in syndrome X. EDLF is secreted by the hypothalamus and functions as the endogenous regulator of membrane sodium-potassium ATPase and synaptic neurotransmission. Studies from this laboratory have demonstrated that the EDLF is chemically the steroidal glycoside digoxin, and that it is synthesized by the isoprenoid pathway. The isoprenoid pathway also synthesizes three other metabolites important in cellular regulation - dolichol, ubiquinone and cholesterol. We have documented individuals with low body-mass index. It was therefore considered pertinent to study the isoprenoid pathway related biochemical cascade - digoxin and neurotransmitter patterns, dolichol levels and glycoconjugate metabolism and

ubiquinone levels and free radical metabolism in individuals with high and low body-mass index. Since hypothalamic archaeal digoxin can regulate neuronal transmission the isoprenoid pathway and its related cascade was assessed in individuals with right hemispheric, left hemispheric and bihemispheric dominance to find out the correlation between hemispheric dominance, metabolic status and body-mass index. Body-mass index has a close correlation with metabolic syndrome X with its related predilection for vascular thrombosis and insulin resistance (non insulin dependent diabetes mellitus). The results are discussed in this setting.

Results

- (1) The results showed that plasma HMG CoA reductase activity, plasma digoxin and dolichol levels were increased and plasma ubiquinone, RBC membrane Na⁺-K⁺ ATPase activity and plasma magnesium reduced in individuals with high body-mass index and right hemispheric dominance. The results showed that plasma HMG CoA reductase activity, plasma digoxin and dolichol were decreased and plasma ubiquinone, RBC membrane Na⁺-K⁺ ATPase and plasma magnesium increased in individuals with low body-mass index left hemispheric dominance.
- (2) The results showed that the concentration of tryptophan and its catabolites was found to be higher in the plasma of individuals with high body-mass index and right hemispheric dominance while that of tyrosine and its catabolites was lower. The reverse patterns were obtained in individuals with low body-mass index and left hemispheric dominance.
- (3) There was increase in plasma lipid peroxidation products with decreased antioxidant protection as indicated by decrease in plasma ubiquinone and RBC reduced glutathione in individuals with high body-mass index. The activity of enzymes involved in free radical scavenging is decreased in

- individuals with high body-mass index. The reverse patterns were obtained in individuals with low body-mass index.
- (4) The results show an increase in the concentration of plasma total GAG and individual GAG fractions, glycolipids and carbohydrate components of glycoproteins in individuals with high body-mass index. The activity of GAG degrading enzymes and that of glycohydrolases showed significant increase in the plasma in individuals with high body-mass index. The reverse patterns were obtained in individuals with low body-mass index.
- (5) The cholesterol: phospholipid ratio of the RBC membrane was increased in individuals with high body-mass index. The concentration of total GAG, hexose and fucose of glycoprotein decreased in the RBC membrane and increased in the serum in individuals with high body-mass index. The reverse patterns were obtained in individuals with low body-mass index.

Discussion

Archaeal Digoxin and Membrane Na⁺-K⁺ ATPase Inhibition in Relation to Body-Mass Index

The archaeaon steroidelle DXP pathway and the upregulated pentose phosphate pathway contribute to digoxin synthesis. The increase in endogenous digoxin, a potent inhibitor of membrane Na⁺-K⁺ ATPase, can decrease this enzyme activity in individuals with high body-mass index. In individuals with high body-mass index, there was significant inhibition of the RBC membrane Na⁺-K⁺ ATPase. There is increased digoxin synthesis in individuals with high body-mass index as evidenced by increased HMG CoA reductase activity. The inhibition of Na⁺-K⁺ ATPase by digoxin is known to cause an increase in intracellular calcium resulting from increased Na⁺-Ca⁺⁺ exchange. This increase in intracellular calcium by displacing magnesium from its binding sites causes a

decrease in the functional availability of magnesium. This decrease in the availability of magnesium can cause decreased mitochondrial ATP formation which along with low magnesium can cause further inhibition of Na+-K+ ATPase, since the ATP magnesium complex is the actual substrate for this reaction. There is thus a progressive inhibition of Na+-K+ ATPase activity first triggered by digoxin. Low intracellular magnesium and high intracellular calcium consequent to Na+-K+ ATPase inhibition appear to be crucial to the pathophysiology of individuals with high body-mass index. Serum magnesium was assessed in individuals with high body-mass index and was found to be reduced. This finding agrees with reports of increase EDLF activity in metabolic syndrome X with associated trunkal obesity. On the other hand in individuals with low body-mass index the reverse patterns were obtained. There was decreased digoxin synthesis and consequent stimulation of membrane Na+K+ ATPase, resulting in decreased intracellular calcium / increased intracellular magnesium. Serum magnesium was elevated in individuals with low body-mass index.

Magnesium is required as a co-factor for cell membrane glucose transport. Hypomagnesemia consequent to membrane Na⁺-K⁺ ATPase inhibition in individuals with a high body-mass index can lead to defective cell membrane transport of glucose. Alteration in cellular membrane composition reported here can also inhibit the membrane transport of glucose. Increased intracellular calcium can activate the G-protein coupled signal transduction of the contrainsulin hormones (growth hormone and glucagon) leading to hyperglycemia. Magnesium translocation appears to be an early event in insulin action. Decrease in intracellular magnesium can block the phosphorylation reactions involved in protein tyosine kinase receptor activity leading to insulin resistance. Alteration in cell membrane composition reported here can also modulate the insulin receptor leading to insulin resistance. Decrease in

74

intracellular magnesium can lead to inhibition of the glycolytic pathway. Increase in intracellular calcium can open up the mitochondrial PT pore and block oxidative phosphorylation. This leads to defective glucose utilisation and contributes to the development of non-insulin dependent diabetes mellitus common in individuals with high body-mass index. Increase in beta cell calcium can contribute to increased insulin release from beta cells and hyperinsulinemia. Hyporuagnesemia has been reported to markedly increased glucose stimulated insulin secretion by the perfuse pancreas. Decreased intracellular magnesium can produce dysfunction of lipoprotein lipase, producing defective catabolism of triglycerides rich lipoproteins and hypertriglyceridemia. In hypomagnesemia lecithin cholesterol acyl transferase (LCAT) is defective and there is reduced formation of cholesterol esters in I-IDL. This results in reduced HDL cholesterol described in individuals with high body-mass index. Magnesium deficiency has been reported to increase LDL cholesterol levels also. Nicotine administration has also been reported to produce significant changes in lipid metabolism. There is increased tissue cholesterogenesis, decreased hepatic degradation of cholesterol and increased triglycerides synthesis. The uptake of circulating triglyceride rich lipoprotein is decreased as revealed by decreased activity of extra hepatic lipoprotein lipase. Plasma LCAT activity is also reduced on nicotine administration. HDL cholesterol is decreased while the LDL-VLDL cholesterol is increased. The absence of morphine in individuals with high body-mass index is also significant. Morphine has been reported to have an effect on glucose metabolism by increasing glucagon Secretion, modulating insulin release from the beta cell and independently through opioid / alphaadrenergic receptors stimulation. These patterns are reversed in individuals with low body-mass index. In individuals with low body-mass index intracellular hypermagnesemia consequent to membrane sodium potassium ATPase stimulation can promote

glucose transport into the cell, increase the activity of the insulin receptor, promote mitochondrial oxidative phosphorylation and increase glucose utilisation. Increase in intracellular magnesium can promote lipoprotein lipase activity promoting triglyceride catabolism and increase the efficiency of mitochondrial beta oxidation of fatty acids. The LCAT activity and HMG CoA reductase activity and cholesterol synthesis are also decreased in intracellular hypermagnesemia. Increase in morphine levels in individuals with low body-mass index can promote glucose utilisation. Thus membrane Na+-K+ ATPase activity can modulate the insulin receptor activity and influence lipid and carbohydrate metabolism important in the regulation of body-mass index. Membrane Na+-K+ ATPase activity can also modulate the intracellular magnesium / calcium concentration within the vascular smooth muscle cell. In individuals with high body-mass index membrane Na+K+ ATPase inhibition can lead to depletion of intracellular magnesium contributing to vasospasm. Increase in intracellular calcium can increase the G-protein coupled activity of platelet activating factor and thrombin receptor contributing to thrombosis. This could relate membrane Na+-K+ ATPase inhibition and high body-mass index with vascular thrombosis. The reverse holds good for low body-mass index where there is a decreased predilection for vascular thrombosis.

Archaeal Digoxin and Regulation of Neurotransmitter Synthesis and Function in Relation to Body-Mass Index

The archaeaon neurotransminoid shikimic acid pathway contributes to tryptophan and tyrosine synthesis and catabolism generating neurotransmitters and neuroactive alkaloids. There is an increase in tryptophan and its catabolites and a reduction in tyrosine and its catabolites in the plasma of individuals with high body-mass index which could be due to the fact that digoxin can regulate the neutral amino acid transport system with preferential promotion of

tryptophan transport over tyrosine. The decrease in membrane Na+-K+ ATPase activity in individuals with high body-mass index could be due to the fact that the hyperpolarising neurotransmitters (dopamine morphine and noradrenaline) are reduced and the depolarising neuroactive compounds (serotonin, strychnine, nicotine and quinolinic acid) are increased. The schizoid neurotransmitter pattern of reduced dopamine, noradrenaline and morphine and increased serotonin, strychnine and nicotine is common to individuals with high body-mass index and schizophrenia and could predispose to its development. In the presence of hypomagnesmia, the magnesium block on the NMDA receptor is removed leading to NMDA excitotoxicity. Thus in individuals with a high body-mass index with a hyperdigoxinemic state there is upregulated serotoninergic, cholinergic and glutamatergic transmission and downregulated dopaminergic, glycinergic and noradrenergic transmission. On the other hand the reverse patterns were obtained in patients with low body-mass index with a hypodigoxinemia induced increase in tyrosine catabolites over tryptophan contributing to membrane Na⁺-K⁺ ATPase stimulation. Hypermagnesemia could also inhibit NMDA transmission. Low serotonin is associated with psychological states of depression and obsessive compulsive disorder which could predispose to the development of low body-mass index. Thus in the low body-mass index state there is upregulated dopaminergic, noradrenergic, morphinergic transmission and down regulated serotoninergic, cholinergic and glutamatergic transmission. There are no previous reports correlating body-mass index with neurotransmitter patterns.

Archaeal Digoxin and Regulation of Golgi Body / Lysosomal Function in Relation to Body-Mass Index

The archaeaon glycosaminoglycoid and fructosoid contributes to glycoconjugate synthesis and catabolism by the process of fructolysis. The

elevation in the level of dolichol in individuals with high body-mass index may suggest its increased availability of N-glycosylation of proteins. Magnesium deficiency has been reported to upregulate glycosaminoglycan and glycolipid synthesis. The increase in the activity of glycohydrolases and GAG degrading enzymes could be due to reduced lysosomal stability and consequent leakage of lysosomal enzymes into the serum. The increase in the concentration of carbohydrate components of glycoproteins and GAG inspite of increased activity of many glycohydrolases may be due to their possible resistance to cleavage by glycohydrolases consequent to qualitative change in their structure. Increased accumulation of glycoconjugates in the vascular wall due to defective catabolism can lead to atherosclerosis common in metabolic syndrome X. The opposite patterns, with decreased dolichol and hypermagnesemia inhibiting glycoconjugate synthesis are noticed in individuals with low body-mass index. The decrease in the activity of glycohydrolases and GAG degrading enzymes could be due to increased lysosomal stability. Decreased glycoconjugate levels in the arterial wall can possibly lead to decreased incidence of atherosclerosis. This could relate body-mass index to vascular disease.

Archaeal Digoxin and Alteration in Membrane Structure and Membrane Formation in Relation to Body-Mass Index

The archaeaon steroidelle, glycosaminoglycoid and fructosoid contribute to cell membrane formation synthesizing cholesterol by the DXP pathway and glycosaminoglycans by fructolysis. The upregulation of the isoprenoid pathway in individuals with high body-mass index can lead to increased cholesterol synthesis and magnesium deficiency can inhibit phospholipid synthesis leading to increased membrane cholesterol: phospholipid ratio. The concentration of total GAG, hexose and fucose content of glycoprotein decreased in the RBC membrane and increased in the plasma suggesting their reduced incorporation

into the membrane and defective membrane formation. This is a consequence of defective membrane trafficking which depends upon GTPases and lipid kinases requiring magnesium as a cofactor and are defective in magnesium deficiency. The change in membrane structure produced by alteration in glycoconjugates and the cholesterol: phospholipid ratio can produce changes in the conformation of Na+K+ ATPase resulting in further membrane Na+K+ ATPase inhibition. The same changes can affect the structure of the organelle membrane contributing to defective lysosomal stability. The opposite patterns with hvpermagnesemia induced decreased cholesterol synthesis. phospholipid synthesis and decreased membrane cholesterol: phospholipid ratio are noticed in individuals with low body-mass index. Also the membrane glycoconjugates are increased and plasma glycoconjugates decreased owing to increased activity of trafficking enzymes consequent to hypermagnesemia. This leads to further membrane Na+-K+ ATPase stimulation and increased lysosomal stability in individuals with low body-mass index. Alteration in membrane structure can affect the transport of glucose into the cell as well as modulate the function of the insulin receptor contributing insulin resistance. There are no previous reports relating alterations in connective tissue metabolism and membrane formation to body-mass index. Not only is there increased adiposity in individuals with high body-mass index, there is also increased volume of connective tissue and intercellular matrix in this group of individuals.

Archaeal Digoxin and Mitochondrial Dysfunction in Relation to Body-Mass Index

The archaeaon vitaminocyte contributes to the synthesis of ubiquinone and mitochondrial electron transport chain function. The mitochondrial function related free radical generation is regulated by the archaeaon vitaminocyte synthesized tocopherol and ascorbic acid. The concentration of ubiquinone

decreased significantly in individuals with high body-mass index which may be the result of low tyrosine levels, reported in individuals with low body-mass index, consequent to digoxin's effect in preferentially promoting tryptophan transport over tyrosine. The aromatic ring portion of ubiquinone is derived from tyrosine. Ubiquinone is an important component of the mitochondrial electron transport chain, and its deficiency leads to mitochondrial oxidative phosphorylation defects. The increase in intracellular calcium can open the mitochondrial PT pore causing a collapse of the hydrogen gradient across the inner membrane and uncoupling of the respiratory chain. Intracellular magnesium deficiency can lead to a defect in the function of ATP synthase. All this leads to defects in mitochondrial oxidative phosphorylation, incomplete reduction of oxygen and generation of the superoxide ion which produces lipid peroxidation. The increase in intracellular calcium may lead to increased generation of NO by inducing the enzyme nitric oxide synthase which combines with the superoxide radical to form peroxynitrite. Ubiquinone deficiency also leads to reduced free radical scavenging. Magnesium deficiency can affect glutathione synthetase arid glutathione reductase function. The mitochondrial superoxide dismutase leaks out and becomes dysfunctional with calcium related opening of the mitochondrial PT pore and outer membrane rupture. The peroxisomal membrane is defective owing to a membrane Na+-K+ ATPase inhibition related defect in membrane formation and leads to reduced catalase activity. Increased generation of free radicals like the superoxide ion and hydroxyl radical can produce lipid peroxidation and cell membrane damage which can further inactivate Na⁺-K⁺ ATPase, triggering the cycle of free radical generation once again. Thus there is decreased efficiency of mitochondrial oxidative phosphorylation in individuals with high body-mass index. Increased generation of free radicals can oxidise LDL contributing to atherosclerosis described in metabolic syndrome X and individuals with high body-mass index. The patterns are reversed in individuals with low body-mass index. The

concentration of ubiquinone increased significantly in individuals with low body-mass index which may be the result of increased tyrosine levels, consequent to digoxin deficiency. The decrease in intracellular calcium can stabilise the mitochondrial PT pore and intracellular hypermagnesemia can increase the activity of ATPase synthase leading on to improved mitochondrial function and reduced free radical generation. The decrease in intracellular calcium may lead to decreased generation of NO by inhibiting the enzyme nitric oxide synthase and reduced peroxynitrite formation. Ubiquinone excess also leads to increased free radical scavenging. The perxoxisomal membrane is stabilised leading to increased catalase activity. The activity of mitochondrial superoxide dismutase is made more efficient owing to stabilisation of the mitochondrial PT pore. In the presence of intracellular hypermagnesemia consequent to membrane sodium-potassium ATPase stimulation the activity of glutathione synthetase and glutathione reductase is upregulated. Decreased generation of free radicals like the superoxide ion and hydroxyl radical can stabilise the cell membrane and further stimulate membrane Na+-K+ ATPase. Thus there is increased efficiency of mitochondrial oxidative phosphorylation in individuals with low body-mass index. This can lead to decreased generation of free radicals and inhibition of LDL oxidation resulting in a decreased incidence of vascular disease. There are no previous reports correlating altered mitochondrial function and ubiquinone synthesis with body-mass index. Alteration in mitochondrial function and glucose utilisation could contribute to the body-mass index of the individual. It would also have a relation to the incidence of vascular thrombosis.

Archaeal Digoxin and Hemispheric Dominance in Relation to Body-Mass Index

The archaeaon related organelle-steroidelle, neurotransminoid and vitaminocyte contribute to hemispheric dominance. The biochemical pattern in

individuals with a high body-mass index correlated well with right hemispheric dominance. Right hemispheric dominance is associated with an upregulated isoprenoid pathway and hyperdigoxinemia. The biochemical patterns in individuals with a low body-mass index correlated well with left hemispheric dominance. Left hemispheric dominance is associated with a downregulated isoprenoid pathway and hypodigoxinemia. Hemispheric dominance may play a vital role in determining body-mass index, metabolic status and risk for vascular thrombosis. It could also modulate insulin resistance and development of non insulin dependent diabetes mellitus. There are no previous reports relating hemispheric dominance to metabolic syndrome X.

Thus body-mass index depends on hemispheric dominance and alterations in the isoprenoid pathway. In individuals with high body-mass index there is chemical right hemispheric dominance with an upregulated isoprenoid pathway, hyperdigoxinemia, increased tryptophan catabolism over tyrosine, increased glycoconjugate synthesis, reduced lysosomal stability and decreased efficiency of mitochondrial oxidative phosphorylation. In individuals with low body-mass index there is chemical left hemispheric dominance with a downregulated isoprenoid pathway, hypodigoxinemia, decreased tryptophan catabolism over tyrosine, decreased glycoconjugate synthesis, increased lysosomal stability and increased efficiency of mitochondrial oxidative phosphorylation.

References

[1] Kurup RK, Kurup PA. *Hypothalamic Digoxin, Cerebral Dominance and Brain Function in Health and Diseases*. New York: Nova Medical Books, 2009.

Global Warming, Symbiotic Evolution and Disease Pathology

Archaea and Viroid Induced Symbiotic Human Evolution and Chronic Gastrointestinal Disease

Archaea and Viroid Induced Symbiotic Human Evolution and Chronic Liver Disease

Archaea and Viroid Induced Symbiotic Human Evolution and Chronic Renal Disease

Archaea and Viroid Induced Symbiotic Human Evolution and Chronic Pulmonary Disease

Archaea and Viroid Induced Symbiotic Human Evolution and Chronic Bone and Joint Disease

Archaea and Viroid Induced Symbiotic Human Evolution and Chronic Cardiovascular Disease

Archaea and Viroid Induced Symbiotic Human Evolution – Lemurian Syndrome - Endomyocardial Fibrosis, Chronic Calcific Pancreatitis, Multinodular Goitre and Mucoid Angiopathy - The Glycosaminoglycoid Organelle

 Archaea and Viroid Induced Symbiotic Human Evolution - Metabolic Change – Metabolic Syndrome X

Archaea and Viroid Induced Symbiotic Human Evolution – Cell Cycle Changes – Chronic Neurological Disease

Archaea and Viroid Induced Symbiotic Human Evolution – Mind Change – Chronic Psychiatric Disease

Archaea and Viroid Induced Symbiotic Human Evolution - Cell Cycle Changes- The Aging Process

Archaea and Viroid Induced Symbiotic Human Evolution - Cell Cycle Changes- Oncogenesis

Archaea and Viroid Induced Symbiotic Human Evolution - Immune Change – Autoimmune Disease

Archaea and Viroid Induced Symbiotic Human Evolution - Chronic Ophthalmic Disease

Archaea and Viroid Induced Symbiotic Human Evolution - Evolution of Speech and Speech Disorders

ISBN: 978-1-946898-06-7

9 781946 898067 >

Price: US \$70

To order the series of books, please contact: Open Science Publishers

Web: www.openscienceonline.com Email: book@openscienceonline.com