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Abstract 

In this paper, the study of problems in optimal control is very important in our day life and their applications can be studied in 

many disciplines based on mathematical modeling physics, chemistry and economy. Because of the complexity of most 

applications, optimal control problems are solved numerically. New techniques for achieving an approximate solution to 

optimal control problems are considered. They are based upon B-spline polynomials approximation with state parameterization 

method. New useful property of B-spline polynomials is first derived then, it is utilized to propose a modified restarted 

technique to reduce the number of unknown parameters with fast convergence. Furthermore, it can be proved that with special 

knot sequence, the B-spline basis are exactly Bernstein polynomials. The objective of the present work is to propose an 

approximate technique for solving linear and nonlinear optimal control problems is presented. The algorithm modifies previous 

works to certain optimal control problems and is depended on a Bernstein series expansion of state parameterization. The 

differential expressions from the constraint and the cost index as well as the boundary conditions are reduced into algebraic 

equations. The technique starts from initial trajectory is based on the boundary conditions then new iterative method with the 

help Bernstein polynomials and produces satisfactory convergence with small number of unknown parameters. The 

applicability of the proposed algorithm is illustrated on four linear and nonlinear optimal control problems. The comparison 

with other works is also included in this paper. 
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1. Introduction 

The study of problems in optimal control is very important 

in our day life. The application of optimal control problems 

can be studied in many disciplines based on mathematical 

modeling physics, chemistry, and economy [1-3]. Because of 

the complexity of most applications, optimal control 

problems are solved numerically. Various numerical methods 

have been proposed to solve (OCPs). In [4] Yousef Edrisi 

studied the solution of OCPs using collocation method using 

B-spline functions. Authors of [5] presented a numerical 

solution of OCPs with aid of state parameterization technique. 

Different numerical algorithms for treating OCPs have been 

introduced by utilizing the orthogonal functions. The 

complexity of the OCPs is decreased by reducing it to an 

algebraic system of equation, for example, B-spline 

polynomials [6], generalized Laguerre polynomials [7], 

Chebyshev polynomials [8-10] as well as third kind 

Chebyshev wavelets functions [11], Boubaker polynomials 

[12]. Special attention is given to find the approximate 

solution of OCPs using BEPs. These polynomials have 

already been utilized for solving OCPs [13] and integral 

equation [14]. In [15], authors have constructed orthonormal 

BEPs and applied them to solve integral equations. 

The approach in the current paper based on BEPs 

expansion for solving OCPs. These polynomials introduced 

by [16-17]. In [17], Mohson, applied the operational matrices 

of BEPs and proposed a numerical solution of fractional 

optimal control problems while Safaie and Farahi in [16] 
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solved delay fractional OCP with the aid of BEPs. For the 

historical development of BEPs properties and their 

applications, the reader can be referred to [19-20]. 

2. Bernstein Polynomials: Definition and Properties 

2.1. Definition of BEPs 

The general form of BEPs of degree in � of the interval (0, 1) is defined by: 

������ = 
�
� � ���1 − �����  0 ≤ � ≤ � 

where 
�
� � = �!

�!�����!. 
That is: 

a) linear BEPs ������ where: 

������ = 1 − �, ������ = � 

b) Quadratic BEPs ������ where: 

������ = �1 − ���, ������ = 2��1 − ��, ������ = �� 

c) Cubic BEPs ������ where: 

������ = �1 − ���, ������ = 3��1 − ���, ������ = 3���1 − ��, ������ = �� 

For mathematical convenience, ������ is equal to Zero if � < 0 or � < �. 

The derivative of the ��� degree BEPs are polynomials of degree � − 1 and are given by: 

������� = ������������ − ���������                                                                    (1) 

where � ≡ �
��. 

it is important in numerical formulation of the problem using the basis for � ≥ 1 with the following useful degree elevation 

property: 

���������� = �
� [�� − �������� + �� + 1���"�� ���]                                                         (2) 

The values of BEFs at the end points are: 

����0� = $ 1, � = 0
0, � = 1, 2, … , � and ����1� = $0 � = 0, 1, … , � − 1

1 � = �  

2.2. Function Approximation 

A square integrable functions '��� in �0, 1� can be expressed in terms of the BEPs basis: 

'��� = ∑ )������� = )*+����,-�                                                                        (3) 

where )* = [)�, )�, … , )�]and +��� = [������,  ������, … , ������] *. 

2.3. New Property of BEPs 

The following proposition presents the relationship between BEPs and the power of �. 

Proposition: the power basis .��/�-�0  can be rewritten in terms of Bernstein through the following relation: 

 �� = [���������� − �
� ����� ���]                                                                             (4) 

For � = 2,3, … . �, where 1 =  ��� + ��� � = ���. 

Proof: 

In order to establish the validity of this proposition since we have: 

�2���� = 3�−1���2 
�
1� 
 �

4� ��
�

�-2
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therefore; 

 ���������� = 3 �−1����"� 
� − 1
� � 
 �

� − 1� ��
���

�-���
 

or ���������� = −1�����"� 
� − 1
� − 1� 
� − 1

� − 1� ����: 

that is ���������� = ����                                                                               (5) 

Now, 

 ����� ��� = 3 �−1����"� 
�
� � 
 �

� − 1� ��
�

�-���
 

= 
 �
� − 1� 
� − 1

� − 1� ���� − 
 �
� − 1� �� 

That is ����� ��� = ����� − ���                                                                        (6) 

From (5) and (6) one can get: 

 ����� ��� − 1
�  ����� ��� = ���� − 1

� ������ − ���� 

Or: 

 ���������� − �
�  ����� ��� = �� which is the required result. 

3. Outline of the Method 

3.1. The Problem Statement 

Find the optimal control ;��� which minimizes the cost function: 

J = = >?�, @���, ;���AB��
�                                                                              (7) 

Subject to: 

a) state equation defined by: 

;��� = '��, @���, @C ���                                                                                  (8) 
where @�. �: [0, 1] → F is the state variable. 

;�. �: [0, 1] → F is the control variable. 

': is a real valued continuously differentiable function. 

b� initial condition @�0� = @� and final condition: 
@�1� = @�                                                                                             (9) 

where @� and @� are states given in F. 

3.2. Solution Scheme 

A robust technique for finding an approximate solution to optimal control problem in this subsection. 

First we start with the following approximation by: 

@���� = �H������� + H��������                                                                          (10) 

Using the initial condition: @�0� = H�����0� + H�����0� 

final condition: @�1� = H�����1� + H�����1� 

Eq. (4) leads to  @� = H� H�B @� = H�. 

After substituting these values into eq (10) one can get: 

@���� = @������� + @������� 
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or @���� = @� + �@� − @���. 

The optimal control u (t) can be obtained from eq. (8) to obtain: 

;���� = '��, @����, @C �����                                                                       (11) 

The functional J can be evaluated using eq. (7) to get: 

 I�== >��, @����, ;����B��
�  

Now the next approximation @����, ;����, I���� is calculated in the next step as below: 

@���� = @���� + H�[− 1
2 ������ 

;�= >��, @����, @C ����� 

I�== >��, @����, ;������
�  

By continuing the procedure, the n
th

 approximated solution for @���, ;��� will be as follows: 

@�"���� = @���� + H�"�[������ − 1
� + 1 ���"���� − ���������� + 1

� ����� ���] 
;�"�= >��, @�"����, @C �"����� 

I�"�== >��, @�"����, ;�"����B��
�  

It is useful to give the following algorithm which summarizes the proposed method. 

The algorithm: 

For the accuracy of the solution choose ∈> 0. 

Step 1: Let � = 1 and put @���� = @���� + �@� + @��������, L���� = I��@��0��. 

@���� = @���� + H�[− 1
2  ������] 

and L���� = I�@��. ��. 

Step 2: let � = 2 → � + 1. 

@�"���� = @������ + H�"�[ ������ − �
�"�  ���"���� −  ���������� + �

�  ����� ���] 

and L���� = I�@��0��. 

Step 3: If |L� − L���| <∈ then stop, otherwise go to step 2. 

L���� = I�@��. �� 

4. Application Examples 

The following examples are considered to illustrate the efficiency of the proposed algorithm. 

Example (1) 

This example clarifies the following concepts: 

Find the optimal state and optimal control based on minimizing the performance index: 

J = N O@��� − 1
2 ;����P B�

�

�
, 0 ≤ � ≤ 1 

subject to ;��� = @C��� + @��� with the condition @�0� = 0, @�1� = �
� �1 − �

Q��. 

The exact solution for the state @��� and the control ;��� is: 
@��� = 1 − 0.5S��� − 0.8160603S�� 

;��� = 1 − S��� 
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and IQVW,� = 0.08404562020. 
Start with the initial approximation to be @���� = 0.199788 ∗ ������. 

The optimal state and control variables can be approximated with the aide of our algorithm are achieved as: 

For � = 1: @���� = 0.199788������ + 0.204561������. 

;���� = 0.608927������ − 0.009563������ + 0.20451������ 

For n=2: @���� = 0.188337������ + 0.210397������ + 0.011654������ − 

0.003885������ 

;���� = 0.608927������ − 0.044323������ + 0.192915������ + 0.046617������ − 0.003885������ 

For� = 3: @\��� = 0.188134������ + 0.210397������ + 0.009018������ − 0.003006������ + 0.002636������ −
0.000659��\��� 

;\��� = 0.608927������ − 0.052435������ + 0.196826������ + 0.054526������ − 0.038156������ + 0.002636������
− 0.000659 ��\��� ]88��\��� 

The approximate results are obtained by the proposed algorithm with � = 1, 2, 3 and compared our results by results of 

Mehne [21]. Our results have almost better accuracy. Total information are listed in Table 1 which illustrates the optimal 

values for the functional J with different iterations. 

Table 1. Results of the functional J. 

Iteration Our method Error Mehne method [21] Error 

1 0.08401526011 3.047×10-5 0.05332622101 3.0×10-2 

2 0.08402489318 2.073×10-5 0.0840152600 3.0×10-2 

3 0.08402519637 2.0424×10-5 0.8402496180 2.0×10-2 

Note that, the optimum values H�, H�, H� for minimizing the functional I are: 

H� = −0.409139, H� = 0.011654, and H\ = 0.002636 

The primacy of present algorithm compared with Mehme method is clear in this example because by the same number of 

iteration n, the present algorithm error are lower. 

Example (2) 

Consider the non-linear control system which consists of minimizing: 

N ;����B�
�

�
 

subject to ;��� = @���C − @����^���, @�0� = 0, @�1� = 0.5. 

The initial approximation in this example is: 

@���� = 0.5 ∗ ������ 

For � = 1. 
@���� = 0.5������ − 0.0189������ 

;���� = 0.4622������ + 0.5378������ − sin �1�[0.5������ − 0.0189������]� 

For � = 2. 
@���� = 0.4837������ − 0.01075������ + 0.0163������ − 0.005433������ 

;���� = 0.4622������ + 0.5052������ − 0.02445������ + 0.0489������ − sin ���[0.4837������ − 0.01075������
+ 0.0163������ − 0.005433������]� 

For � = 3. 

@\��� = 0.4837������ − 0.01075������ + 2.1159������ 

−0.7053������ − 2.0996������ − 0.5249��\��� 
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;\��� = 0.4622������ + 6.804������ − 3.17385������ 

−8.3495������ + 2.799467������
− sin ���[0.4837������ − 0.01075������ + 2.1159������ − 0.7053������ − 2.0996������ − 0.5249��\���]� 

The optimum values H�, H� and H� for minimizing the functional I are: 

H� = 0.0378, H� = 0.0163., and H\ = −2.0996. 

The value of I = 0.2005 for � = 1, 2, 3. 
Example (3) 

The proposed method in this example is applied to the following problem. 

J= �
� = �3@���� + ;�����B��

�  

subject to ;��� = @���C + @���, @�0� = 0, @�1� = 2. 

The initial approximation in this example is @���� = 2 ∗ ������. 

For � = 1: @���� = 2������ − 0.714286������. 
 ;���� = 0.571429������ + 5.428571������ − 0.714286������ 

For � = 2. 

 @���� = 1.611111������ − 0.519841������ + 0.388889������ − 0.129621������ 

 ;���� = 0.571429������ + 3.261511������ − 1.103041������ 

+1.555289������ − 0.129621������ 

For � = 3. 
 @\��� = 1.611111������ − 0.519841������ + 0.179812������ 

−0.059937������ + 0.209077������ − 0.052269��\��� 

 ;\��� = 0.571429������ + 3.634211��� − 0.789391������ 

+2.183612������ − 0.059937������ − 0. 069723������ − 0.052269��\��� 

The optimum values H� , H�  and H�  for minimizing the functional I  are H� = 1.4280 , H� = 0.3888 , H\ = 0.2091 . The 

comparison among the BEPs algorithm with n=1, 2, 3 beside Mehne method [21] are listed in Table 2 and the exact value for 

the cost is J=6.1586. 

Table 2. The values of cost functional I in example 3. 

Iteration Our method Error Mehne method [21] Error 

1 6.19047619 0.0318762 6.1905 0.0319 

2 6.177513228 0.01891323 6.1775 0.0189 

3 6.174827155 0.016227 6.1753 0.0167 

Example (4) 

The proposed method in this example is applied to the following problem: 

J= = �@���� + ;�����B��
�  

subject to ; = @C , @�0� = 0, @�1� = 0.5. 

The initial approximation in this example is: 

@���� = 0.5 ∗ ������ 

For � = 1. 
@���� = 0.5������ − 0.056818������ 

;���� = 0.386364������ + 0.613636������ 

For � = 2. 

@���� = 0.470833������ − 0.042235������ + 0.029167������ − 0.009722������ 
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;���� = 0.386364������ + 0.555303������ − 0.043750������ + 0.087500������ 

For � = 3. 

@\��� = 0.470833������ − 0.042235������ + 0.016516������ 

−0.005520������ + 0.012606��� − 0.003151��\��� 

;\��� = 0.386364������ − 0.593111������ − 0.024842������ 

+0.137922������ − 0.016807������ 

Table 3 illustrates the present algorithms The results for this example in comparison with results obtained by Mehne [21]. 

further the optimal values for performance index I are also compared with the exact solution while the exact state and control 

solution as well as the actual value for I are Note that, the actual solution of this problem is: 

@��� = S�S� − S���
2�S� − 1� , ;��� = S�S� + S���

2�S� − 1�  and 

IQVW,� = 0.30232588214 

The comparison among the BEPs algorithm with � = 1, 2, 3 beside Mehne method [21] are listed in Table 3. 

Table 3. The values of cost functional I in example 4. 

Iteration Our method Error Mehne method [21] Error 

1 0.3285984848 3.379�10�\ 0.333333333 5.0×10-3 

2 0.3267489571 2.1814�10�\ 0.3285984848 3.4×10-3 

3 0.3226487064 2.03089�10�\ 0.3284769571 2.1×10-4 

Note that the optimum values H�, H�, H\  for minimizing the functional I  are H� = 0.113636, H� = 0.029167 , and H\ =
0.012606. 

5. Conclusion 

A modification is proposed to the state parameterization 

technique by introducing accelerating iterative algorithm for 

solving optimal control problem with the aid of BEPs 

functions with only unknown coefficient must be evaluated 

in each approximation. A new resulted modification solution 

was constructed which based upon novel property of (BEPs) 

functions. The examples illustrated the reliability of the 

algorithm devoted in this paper. 
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