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Abstract 

Observational evidences suggest that the Universe is accelerating and the cosmological Chaplygin gas model is one of the most 

reasonable explanations of this phenomena. This model allows to simulate the dark energy in the cosmic fluid and has a great 

application in the study of the fundamental theories of physics and cosmology. Several independent observations indicate that 

the greater part of the total energy density of the universe is in the form of a dark energy and the rest in the form of non-

baryonic cold dark matter particles, but which have never been detected. In this paper, following usual procedure has been 

extended the work of Panigrahi and Chatterjee (2016) for a variable generalized Chaplygin gas and has been studied the 

thermodynamical behavior for a Carnot engine using the thermal equations of state for the pressure and internal energy as 

function of temperature and volume for this type of gas. It has been derive an expression for the thermal efficiency of Carnot 

heat engine that depends on the limits of maximum and minimal temperature imposed on the cycle and of an exponent 

associated with the equation of state of variable generalized Chaplygin gas. Depending on the value of the exponent is 

recovered the expression for the efficiency of a Carnot cycle in an ideal gas as a particular case of this work. 
 

Keywords 

Variable Generalized Chaplygin Gas, Dark Energy, Thermal Equation of State, Carnot Heat Engine, Thermal Efficiency 

 

1. Introduction 

The discovery of accelerating expansion of the universe 

[1–3] has allowed generated important changes in the 

fundamental theories in physics and cosmology and a 

Chaplygin type of gas cosmology is one of the most 

reasonable explanations for this phenomena. Astronomical 

observations [4, 5] show that the kind of matter of which 

stars and galaxies are made forms less than 5% of the 

universe’s total mass and the independent observations 

indicate that the greater part of the total energy density of the 

universe is in the form of a dark energy, and the rest in the 

form of non-baryonic cold dark matter particles, but which 

have never been detected [6].  

The thermodynamical behaviour of the Chaplygin gas 

model was studied by Myung [7] and Panigrahi [8]. Myung 

[7] found a new general equation of state that describes the 

Chaplygin gas completely. Panigrahi [8] obtains that the third 

law of thermodynamics is satisfied in this model and that the 

volume increases when temperature falls during adiabatic 

expansions, which also is observed in an gas ideal [9]. 

Malaver [10] found that the thermodynamic efficiency of 

Carnot cycle for CG model only depend on the limits of 

maximum and minimal temperature as in case of the ideal 

gas and the photons gas. More recently, Panigrahi and 

Chatterjee [6] studied the viability of the variable generalized 

Chaplygin gas (VGCG) whose equation of state is the 

following = − B
P αρ  where P is the pressure of the fluid, ρ is 

the energy density, α is a parameter and 3

n

OB B V
−

= where n 

is an arbitrary constant and V is the volume of the fluid and 

derived thermodynamic expressions as functions of 

temperature and volume.  

An ideal gas is a gas composed of a group of randomly 

moving, non-interacting point particles. The ideal gas 

approximation is useful because it obeys the gases laws and 

represent the vapor phases of fluids at high temperatures for 

which the heat engines is constructed [11]. Any device for 
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converting heat into work in a cyclic process can be called a 

heat engine or thermal machine and must operate in the 

presence of two different temperatures [12]. In a steam engine, 

for example, the high temperature is the temperature of the 

steam and the low temperature is the condensed cold. A heat 

engine that can work with an ideal gas as working substance is 

the Carnot cycle. For the ideal gas, Carnot cycle will be 

composed by two isothermal curves and adiabatic which will 

come given by the conditions PV const= and PV constγ = , 

respectively [12, 13] where γ is an adiabatic exponent. 

One of the great virtues of the Carnot cycle is its potential 

applicability to any working substance [13]. In agreement 

with Leff [9] and Lee [11] the Carnot cycle for a photon gas 

provides a very useful tool to illustrate the thermodynamics 

laws and it is possible to use for introducing the concepts of 

creation and annihilation of photons in an introductory course 

of physics. Bender et al. [14], showed that the efficiency of a 

quantum Carnot cycle is the same as that of a classical 

Carnot cycle, with the identification of the expectation value 

of the Hamiltonian as the temperature of the system. Unlike 

the ideal gas, the pressure for a photon gas is a function only 

of the temperature and the internal energy function is 

dependent of volume [9]. 

In this paper, an expression of the efficiency of Carnot 

cycle for the VGCG model is deduced with a thermal 

equation of state given for Panigrahi and Chatterjee [6] that 

depends of the temperature and volume. It has been found 

that the efficiency of Carnot cycle for the VGCG model will 

depend on the limits of maximum and minimal temperature 

imposed on the cycle and the parameter α. The article is 

organized as follows: in Section 2, the physical properties of 

Carnot heat engine are studied; in Section 3, is shown the 

deduction for the thermal efficiency of Carnot cycle for the 

ideal gas; in Section 3, is obtained an expression for the 

efficiency of Carnot engine for the VGCG model; in Section 

4, presents the conclusions of this study.  

2. Carnot Heat Engine 

In the process of operation of a heat engine between two 

different temperatures, some heat is always transferred on the 

outside [12]. If an amount of heat HQ  is absorbed at the high 

temperature the work is done on the surroundings, and if a 

quantity of heat LQ is lost at the lower temperature, then of 

the first law of thermodynamics for the entire cyclic process 

HQ + LQ + 0netW U= ∆ =  where U∆ is the variation of the 

internal energy in the process and netW  is the work in the 

cycle [12, 13]. The efficiency of a heat engine is commonly 

defined as the ratio of the work obtained from the system to 

the heat taken from the hot reservoir  

1net H L L

H H H

W Q Q Q

Q Q Q
η − +

= = = +                      (1) 

A particularly simple heat engine cycle to handle 

mathematically is the Carnot cycle [12, 15]. In the Figure 1, 

two temperatures are included, HT  and LT . The first step in 

a Carnot cycle is a reversible isothermal expansion a HT  or 

from point A to point B. This expansion could be achieved by 

expanding the gas in contact with a large heat reservoir at 

HT . A certain amount of work will be done on the 

surroundings which implies an absorption of heat. 

The second step is an reversible adiabatic expansion from 

the state at point B at point C. Under these conditions 

0BCQ = and BC BCU W∆ =  and the internal energy change is 

the same as the work done on the working substance. Since 

work is done on the surroundings, BCW is negative and the 

internal energy must fall.  

The third step, the reversible isothermal compression, is 

continued just to the point C where a final adiabatic 

compression will bring the gas back to its starting conditions 

at point A on the PV plot of the Figure 1. Work CDW  is done 

on the gas, and an amount of heat LQ is lost from the gas 

which compensates for this work exactly in an ideal gas and 

approximately in a real gas.  

In agreement with Dickerson [12] the final adiabatic 

compression to the starting point occurs with work DAW  done 

on the gas and an increase in the internal energy. For the 

entire cycle, net AB BC CD DAW W W W W= + + +  and 

neto H LQ Q Q= + . The total sum of heat and works is zero 

since the initial and final states are identical  

0H L AB BC CD DA net netQ Q W W W W Q W U+ + + + + = + = ∆ =                                              (2) 

The efficiency of the entire cycle in converting heat to 

work is  

1net H L L

H H H H

W Q Q QQ

Q Q Q Q
η − +

= = = = +               (3) 

Since HQ and LQ have opposite signs, the efficiency is 

less than 1 and is the greatest possible efficiency.  

3. Carnot Cycle in an Ideal Gas 

In this work, we have used the convention of Wark and 

Richards [15] that defines the work during a reversible 

process as 

W PdV= −∫                                 (4) 

Following Dickerson [12] and Nash [13], in Figure 1 we 

show the Carnot cycle for an ideal gas. In the first step of A 

to B, that is the isothermal expansion, there is no change in 

the internal energy U∆  in an ideal gas. This implies that 

ln B
AB AB H

A

V
W Q RT

V
− = =                      (5) 
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ABQ  is the absorbed heat in the first step, HT is the high 

temperature and R is the universal gas constant.  

The second step of B to C is an adiabatic expansion. In this 

expansion 0BCQ = and the change in internal energy is equal 

to the work done 

( )BC BC V L HU W C T T∆ = = −                     (6) 

where VC  is the thermal capacity at constant volume and LT

is the low temperature. 

In the isothermal compression of C to D, the internal energy 

change is again zero and we obtain  

ln D
CD CD L

C

V
W Q RT

V
− = =                         (7) 

In the final adiabatic compression of D to A 0DAQ =  and  

( )DA DA V H LU W C T T∆ = = −                      (8) 

In a Carnot cycle for an ideal gas the net work done in the 

two adiabatic processes is zero and the adiabatic steps are 

related by the equation 

VC
R

B A L

C D H

V V T

V V T

 
= =  

 
                        (9) 

The network of the four steps is net AB CDW W W= + . 

Substituting (9) into eqs. (5) and (7), we obtain  

( ) ln A
net H L

B

V
W R T T

V
= − −                       (10) 

The heat absorbed at the high temperature is ABQ  and the 

thermal efficiency of the entire cycle is  

1net L

AB H

W T

Q T
η −

= = −                           (11) 

 

Figure 1. Carnot cycle for an ideal gas. 

4. Thermal Efficiency in a Variable 

Generalized Chaplygin Gas 

According Panigrahi and Chatterjee [6], the equations of 

state for the internal energy and pressure as a function of V 

and T for the VGCG model can be written as  

( )
1

1

3
0

1

1

1

n

B V

NU V

T

α

α
α

α

τ

+−

+

 
 +
 
 =
 

  −     

                    (12) 

1
1 1

1
1

3
0 1

1

n
N T

P B V

α
α α αα α α

α τ

+ ++− +
        = − −      +       

     (13) 

where 0B  is a positive universal constant, n  is a constant, 

( )3 1

3

n
N

α+ −
= and τ is a universal constant with 

dimension of temperature.  

Considering the Carnot cycle for a VGCG model, in the 

first step, the reversible isothermal expansion and 

substituting (13) in (4) and integrating, the work done is  

( )
1 1 1

1
0 1 1

1
1

N N

H
I B A

B T
W V V

N

α
α α

α α α αα
τ

+ +
+

+ +
    +     = − −             

                                                    (14) 

The expression for the differential of internal energy dU  is 

given by  

V T

U U
dU dT dV

T V

∂ ∂   = +   ∂ ∂   
              (15) 

where V

V

U
C

T

∂ =  ∂ 
 

For an isothermal process 0dT = and (15) it reduce to  

T

U
dU dV

V

∂ =  ∂ 
                               (16) 

and for VGCG gas, 
T

U

V

∂ 
 ∂ 

takes the form 
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( )
( )

( )
( )

( )
1

1
0

3 1
1

3 1

1
1 1

1

3 1

3 1

1

n

T

H

B

NnU
V

V

T

α
α

α

α α
α

α
α

α

τ

+
+ −

−
+

+ +

 +
 

 + −  ∂   =   ∂ +      
  −    

  

                                                   (17) 

Substituting (17) in (16) and integrating it is obtained for the change of internal energy 

( )
1

1 1 1
1

0 1 1
1

1

N N

H
I B A

B T
U V V

N

α α
α α α αα

τ

−+ +
+

+ +
    +     ∆ = − −             

                                                (18)

With the eq. (14), (18) and the first law of thermodynamics [12] the absorbed heat in the first step is given by  

( )
1 11 1

1
0

1

1 1

1

1

N N

B A

H
I

H

V V
B T

Q
N

T

α αα
α α

α α
α

α
τ

τ

+ +
+

+

+ +

 
 −
  +    =    

     
  −    

  

                                                       (19) 

In the third path, the reversible isothermal compression, the work done is  

( )
1 1 1

1
0 1 1

1
1

N N

L
III D C

B T
W V V

N

α
α α

α α α αα
τ

+ +
+

+ +
    +     = − −             

                                                  (20) 

and for the transferred heat IIIQ  is obtained  

( )
1 11 1

1
0

1

1 1

1

1

N N

D C

L
III

L

V V
B T

Q
N

T

α αα
α α

α α
α

α
τ

τ

+ +
+

+

+ +

 
 −
  +    =    

     
  −    

  

                                                      (21) 

The network of the four steps is  

neto I II III IVW W W W W= + + +                                                                            (22) 

and the net heat is  

neto I IIIQ Q Q= +                                                                                       (23) 

For a cyclical process [12, 13], 0U∆ =  and the net work can be written as  

( )

1 1

1

1
0 1 1 1 1

1 1

1

1 1

H L
N N N N

neto neto B DA C

H L

T T

B
W Q V V V V

N
T T

α α
α α

α
α α α α

α α
α α

α τ τ

τ τ

+ +

+
+ + + +

+ +

 
 

    
        +       = − = − + −  

                     − −          
        

              (24) 
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The heat absorbed at HT  is given by (19) and the efficiency is  

1

1 1

1 1
1

1

1 1 1 1

1

1

1

N N
H

D C

neto L

N N
I H

BA
L

T
V V

W T

Q T
V VT

α α
α

α αα
α

α α α α
α

τ
η

τ

+ +

+ ++

+ + + +

 
   −    −      −    = = −  
      −    −     

  

                                      (25) 

 eq. (25) can be written as  

2 1

1 11 1 1
1

1
1

1 2

1 11 1 1
1

1

11 1

1

11 1

N
N

DH L
C N

Cneto L

N
I H N

A
H L B N

B

VT T V

VW T

Q T
VT T V

V

α αα α α
α α α

α
αα

α αα α α
αα α

α

τ τ
η

τ τ

+ ++ + +
+

+
+

+ ++ + +
+

+

 
            − − −           
    −      = = −  

       
       −− −          

        





                         (26) 

For a reversible adiabatic process in the VGCG model [16]  

1
1

1

N

V
const

T

α
ατ
+

=
 

  −    
  

                                                                 (27) 

Then of the eq. (27) it is deduced  

( ) ( )

( ) ( )

1

1 1 1

1

1

1 1 1

N
L

C H

B L

H

T
V T

V T

T

α α α
α αα

α

α α α
α α

τ

τ

+ + +

+

+ + +

 
− 

     =   
     

− 
 

                                                     (28) 

Substituting eq. (28) in eq. (26), the efficiency can express as 

( ) ( )

( ) ( )

2 1

1 11 1 1

1 1 1
1

1 2 1

1 1 1 11 1 1

1 1

1

1 1

DH L

L

neto L H

I H L

HH L

VT T

T
W T T

Q T T

TT T

α αα α
α α α α α

α α αα
α

α α α αα α α
α α α α

ττ τ
η

τ
τ τ

+ ++ +
+ + +

+

+ + + ++ + +

   
        − −       −    

      −      = = −    
        

−        − −           
      

1

1

1

1

1

1

N

N

C

N

A

N

B

V

V

V

α

α

α

α

+

+

+

+

 
 

− 
 
 

 
 

− 
 
 

       (29) 

The eq. (27) implies that for the Carnot cycle in a VGCG model 

D A

C B

V V

V V
=                                                                                (30) 

With eq. (30), eq. (29) can be written as  
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( ) ( )

( ) ( )

2 1

1 11 1 1
1 1 1

1

1 2 1

1 1 1 11 1 1

1 1

1

1 1

H L

L

neto L H

I H L

HH L

T T

T
W T T

Q T T

TT T

α αα α
α α α α α

α α αα
α

α α α αα α α
α α α α

ττ τ
η

τ
τ τ

+ ++ +
+ + +

+

+ + + ++ + +

   
        − −       −    

      −      = = −    
        

−        − −           
      

                    (31) 

Rearranging (31), it is deduced for the thermal efficiency 

in a Carnot cycle for the VCGC model  

1

1 L H

H L

T T

T T

α α
α

η

+
   

= −    
   

                     (32) 

With 1α = is recovered the efficiency for the Carnot cycle 

for an ideal gas as a particular case of this work 

1 L
ideal

H

T

T
η = −                                 (33) 

5. Conclusions 

In this work has been deduced an expression for the 

efficiency of a Carnot heat engine with a variable generalized 

Chaplygin gas, which is a function of the maximum and 

minimal temperature of the thermodynamic cycle and the 

parameter α . The study of Chaplygin gas can enrich the 

courses of thermodynamics, which contributes to a better 

compression of the thermal phenomena.  

The thermodynamic equations that describe the behavior 

of the Chaplygin gas are tractable mathematically and offer a 

wide comprehension of the accelerated universe expansion 

and of the basic ideas of the modern cosmology.  

It is showed that the efficiency of Carnot cycle in a 

variable generalized Chaplygin gas is the same as that of a 

classical Carnot cycle when 1α = as in the ideal gas and the 

photon gas. For a Carnot heat engine in the VGCG model to 

be 100% efficient, temperature of hot reservoir HT  must be 

infinite or zero for the cold reservoir LT  and the second law 

says that a process cannot be 100% efficient in converting 

heat into work.  
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