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Abstract 

This paper focuses on the application of Galois field to construct the balanced incomplete block design. In GF(7), minimum 

function has been calculated, hence generate the element of GF(7) and construct mutual orthogonal Latin square (MOLS). 

Using mutual orthogonal Latin square, balanced incomplete block design has been made. 
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1. Introduction 

In Incomplete block designs, as their name implies, the 

block size is less than the number of treatments to be tested. 

These designs were introduced by Yates in order to eliminate 

heterogeneity to a greater extent than is possible with 

randomized blocks and Latin squares when the number of 

treatments is large. If the number of treatments to be 

compared is large, then we need large number of blocks to 

accommodate all the treatments. This requires more 

experimental material and so the cost of experimentation 

becomes high which may be in terms of money, labor, time 

etc. The completely randomized design and randomized 

block design may not be suitable in such situations because 

they will require large number of experimental units to 

accommodate all the treatments. In such situations when 

sufficient numbers of homogeneous experimental units are 

not available to accommodate all the treatments in a block, 

then incomplete block designs can be used. In incomplete 

block designs, each block receives only some of the selected 

treatments and not all the treatments. Sometimes it is possible 

that the available blocks can accommodate only a limited 

number of treatments due to several reasons. The precision of 

the estimate of a treatment effect depends on the number of 

replications of the treatment. Similar is the case for the 

precision of estimate of the difference between two treatment 

effects. If a pair of treatment occurs together more number of 

times in the design, the difference between these two 

treatment effects can be estimated with more precision. To 

ensure equal or nearly equal precision of comparisons of 

different pairs of treatment effects, the treatments are so 

allocated to the experimental units in different blocks of 

equal sizes such that each treatment occurs at most once in a 

block and it has an equal number of replications and each 

pair of treatments has the same or nearly the same number of 

replications. When the number of replications of all pairs of 

treatments in a design is the same, then we have an important 

class of designs called Balanced Incomplete Block (BIB) 

designs. It was first devised by Yates in 1936 for agricultural 

experiments. These design have evidently some 

constructional problems because the allotments of k  of the 
v  treatments in different blocks, so that each pair of 

treatments is replicated a constant number of times is not 

straight - forward. The constructional problems were solved 

by the joint efforts of Fisher, Yates and Bose in 1939 among 

others. While Fisher and Yates being in touch with the 

experimental scientists were restrained in their efforts to 

obtain new designs and new analytical techniques by the 

requirements of the experimenters, Bose constructed more on 

the methods of construction of the balanced and their 
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Incomplete Block Designs and was not necessarily 

constructed by the consideration of practical utility. 

Das and Giri [7] discussed the basic concept of design of 

experiments. Bose [4], Bose et al. [5] and Mann [10] 

discussed construction of mutually orthogonal Latin square. 

Das and Giri [7] were briefly explained for Latin Square 

Design, Graeco Latin Squares, introduction to Mutually 

Orthogonal Latin Square (MOLS), Construction of MOLS (4 

x 4) and construction of Greaco Latin Square Design of order 

only (5 x 5). Discussed about construction and incomplete 

block design, Bose [3], Connor [6], Fisher [8], Kshirsagar 

[9], Mann [10], Menon [11] are noteworthy. Sharma and 

Kumar [14] developed balanced incomplete block design 

using Hadamard rhotrices. Bayrak and Bulut [2] constructed 

orthogonal balanced incomplete block design. Arunachalam 

et al. [1] constructed of efficiency-balanced design. 

Pachamuthu [13] showed construction of mutually 

orthogonal Latin square and check parameter relationship of 

balanced incomplete block design. 

This paper has been shown the construction of balanced 

incomplete block design using mutual orthogonal Latin 

square. To construct mutual orthogonal Latin square Galois 

field theory has been used. Construction of Galois field 

( )mpGF , finding minimum function of Galois field ( )7GF  

and hence construct mutual orthogonal Latin square. 

2. Galois Field 

Galois Field, named after Evariste Galois, also known as 

finite field, refers to a field in which there exist finitely many 

elements. It is particularly useful in translating computer data 

as they are represented in binary forms. That is, computer 

data consist of combination of two numbers, 0 and 1, which 

are the components in Galois field whose number of 

elements is two. Representing data as a vector in a Galois 

Field allows mathematical operations to scramble data easily 

and effectively. 

The finite field format by the mp  classes of residues is 

called a Galois field of order mp  and is denoted by ( )mpGF , 

where, p  is prime number and m  is positive integer. The 

function ( )xp  is said to be a minimum function for 

generating the elements of ( )mpGF . The non-zero elements 

may be represented either as polynomials degree at most 

( )1−m  as we know the power of primitive root x such that 

( ) 011 =−+− px
m

p . To obtain the minimum function we divide 

( )11 −+− px
m

p  by the least common multiple of all factors 

lies 1+d
x , where d  is a divisor of 1−mp . Then we get the 

cyclotomic equation. That is, the equation that has for its 

roots, all primitive roots of the equation ( ) 011 =−+− px
m

p . 

The order of the equation will be ( )1−mpφ , where ( )kφ  

denotes the number of positive integers less than k and 

relatively prime to it. In this equation, by replacing each 

coefficient by its least non-zero residue to modulus p . We 

get the cyclotomic polynomial of order ( )1−mpφ . Let ( )xp be 

an irreducible factor of this polynomial, then ( )xp  is a 

minimum function which is in general not unique. 

The elements of Galois field ( )mpGF is defined as 

( ) ( ) ( ) ( )
( )1,...,2,1,

1,...,2,1,1.,..,2,1,1...,,2,1,0

1111

2222

−+++

∪−+++∪−+++∪−=
−−−− ppppp

ppppppppppppGF

mmmm

m

 

where Ρ∈p  and +Ζ∈m . The order of the field is given by 

mp  while p  is called the characteristics of the field. 

Example 

( ) ( )6,5,4,3,2,1,07 =GF  

which consists of 7 elements where each of them is a 

polynomial of degree 0 (a constant). 

2.1. Construction of Galois Field GF(pm) 

Construction of Galois field of mp  elements from the thp

order field ( )pGF . thp  elements of ( )pGF are ( )1.,..,1,0 −p

and a new symbol α . Then define a multiplication ""•  to 

introduce a sequence of power of α  as follows 
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Now the following set of elements on which a 

multiplication operation ""• is defined: 

{ },......,,,,1,0 2 jF ααα=  

Let ( )xp  be a primitive polynomial of degree m  over 

( )pGF , assume α  be a new element such that ( ) 0=αp . 

Since ( )xp  divides ( )11 −+− px
mp , then, ( ) ( ) ( )xpxqpx

mp =−+−
1

1 . 

If we replace x  by α  in the above equation, we obtain 

( ) ( ) ( )ααα pqp
mp =−+−

1
1 . 

Since ( ) 0=αp , we have 

( ) ( ) .011 •=−+− αα qp
m

p  

If we regard ( )αq  as a polynomial of α  over ( )pGF , it 

follows that ( ) 00 =•αq . As a result, we obtain the following 

equality 

( ) 011 =−+− p
m

pα . 

Adding 1 to both sides of the above equation (use modulo-
p ) result in the following equality 

11 =−mpα . 

Therefore, under the condition that ( ) 0=αp , the set F  

becomes finite and contains the following elements 







= −22* ,..,.,,1,0

mpF ααα . 

2.2. Irreducible Polynomial 

A polynomial is said to be irreducible if it cannot be 

factored into nontrivial polynomials over the same field. Any 

irreducible polynomial over ( )pGF  of degree m  divides 

( )11 −+− px
m

p . 

For example, in the field of rational polynomials [ ]xQ  

( ..ei , polynomials ( )xf  with rational coefficients), ( )xf  is 

said to be irreducible if there do not exist two non constant 

polynomials ( )xg  and ( )xh  in x  with rational coefficients 

such that ( ) ( ) ( )xhxgxf = . 

Nagell [12] showed in the finite field ( )2GF , 1
2 ++ xx  is 

irreducible, but 1
2 +x is not, since

( )( ) ( )2mod11211 22 +=++=++ xxxxx . That is, a polynomial 

is irreducible in ( )mpGF  if it does not factor over ( )mpGF . 

Otherwise it is reducible. 

2.3. Primitive Root 

There is at least one element in every Galois field, 

different powers of which give the different non-zero 

elements of the field, such an element is called primitive root 

of that field. The non-zero elements may be represented 

either as polynomials degree at most ( )1−m  as we know that 

the power of primitive root x  such that, ( ) 011 =−+− px
m

p . 

In ( )mpGF , a nonzero element is said to be primitive if the 

order of x is 1−p . The powers of a primitive element 

generate all the nonzero elements of ( )mpGF . x  is the 

primitive root of ( )mpGF , if x satisfies the equation 

( ) 011 =−+− px
m

p . 

For example, in ( )7GF , the equation ( ) 01717 =−+−x or, 

06
6 =+x . 

The above equation satisfies for ( )7mod32 orx = . But 

only for different powers of 3=x  under 7mod , which give 

the different non-zero elements of the field. 

33
1 = , 23

2 = , 63
3 = , 43

4 = , 53
5 = , 13

6 = . From the 

sequence we get 6,5,4,3,2,1 . Therefore 3 is the primitive 

root of ( )7GF . 

List of Primitive roots of Galois fields of order p  

Order of Field (P) Primitive root x 

3 2 

5 2 

7 3 

11 2 

13 2 

17 3 

19 2 

23 5 

2.4. Minimum Function 

If the function ( )xf  can be factorized with the help of 

( )mpGF  then the function ( )xf  is called the minimum 

function of ( )mpGF . If the minimum function is suitably 

chosen, the class of standard representative x  will be a 

primitive element of ( )mpGF . 

2.5. Calculating Minimum Function of GF(7) 

We know the polynomial ( )11 −+− px
m

p  over ( )mpGF . 

For ( )7GF , polynomial reduced to ( ) 01717 =−+−x or, 

06
6 =+x . 

To obtain the minimum function we divide 6
6 +x  by the 

least common multiple of all factors lies 1+d
x , where d  is a 

divisor of 6171 1 =−=−mp . 

Therefore, divide 6
6 +x  by 1+x  and get a cyclotomic 

equation 1666
2345 +++++ xxxxx . After factorized the 

cyclotomic equation, we get two minimum functions 

1
24 ++ xx  and 16 +x . 

This paper have been only considered the minimum 

function 1
24 ++ xx . Now replace x  by α  in the above 

equation and equating to zero and generating the different 

elements of ( )7GF . 

01
24 =++αα  

Or, 66
24 += αα  
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Or, 24
661 αα +=  

The elements are α , 2α , 3α , 66
24 += αα  

( ) ααααααα 6666 3245 +=+•=∗=  

( ) 16666 24356 =+=+•=∗= αααααααα . 

List of Primitive Polynomials for Selected Values of p  

and n  

GF f(x) 

22  
2

1x x+ +  

32  
3

1x x+ +  

42  
4

1x x+ +  

52  
5 2

1x x+ +  

2
3  

2
2x x+ +  

3
3  

3
2 1x x+ +  

2
5  

2
2x x+ +  

3. Latin Square 

A Latin square is an ancient puzzle where you try to figure 

out how many ways Latin letters can be arranged in a set 

number of rows and columns (a matrix); each symbol appears 

only once in each row and column. It’s called a Latin square 

because it was developed based on Leonard Euler’s works, 

which used Latin symbols. However, any letters can be used. 

3.1. Orthogonal Latin Square 

A Latin square arrangement is an arrangement of s symbols 

in s rows and s columns, such that every symbol occurs once 

in each row and each column. When two Latin squares of 

same order are superimposed on one another, in the resultant 

array if every ordered pair of symbols occurs exactly once, 

then the two Latin squares are said to be orthogonal. 

3.2. Mutual Orthogonal Latin Square 

If in a set of Latin squares, any two Latin squares are 

orthogonal then the set is called Mutually Orthogonal Latin 

Squares (MOLS) of order s. 

Mutually orthogonal Latin squares of order 3 

The following two Latin squares are orthogonal to each other. 

 

When the two squares are superimposed, we obtain the 

following Graeco-Latin square. 

 

3.3. Graeco-Latin Square 

Two nn×  Latin squares are orthogonal to each other if 

each letter of the first square occurs in the same position as 

each letter of the second square exactly once. Such a pair is 

often called a Graeco-Latin square, because traditionally 

Latin letters are used for the first square and Greek letters for 

the second square. 

3.4. Balanced Incomplete Block Design 

Randomized block design and Latin square design are 

honored as complete block design where each block, row and 

column contains all the treatments under consideration. 

These complete blocks design as orthogonal designs are 

efficient having simple analysis. But for large number of 

treatments in experiments, it may be difficult or even 

impossible to obtain large size homogenous blocks to 

accommodate all the treatment in each block. These clumsy 

situations led to the experiments to use incomplete block 

design in which the number of experimental units per block 

is less than the number of treatments under consideration. In 

fact an incomplete block design is a design where block size 

is less than the number of treatments to be compared. 

Thus a BIB design, an arrangement of v  treatments in b  

blocks each of size ( )vk <  such that 

i) Each treatment occurs at most once in a block 

ii) Each treatment occurs in exactly r  blocks 

iii) Each pair of treatments occurs together in exactly λ  

blocks. 

Where, +∈ Zrkbv λ,,,,  and +Z is the set of integer number. 

4. Result 

Primitive elements of Galois field ( )7GF are 0 , 1 , α , 2α , 

3α , ( )16 2 +α  and ( )αα +36  with the minimum function 

1
24 ++ αα , then the elements of ( )7GF  can be obtained as 

follows 

Table 1. First two way additive table of the elements of GF(7). 

+ 0  1  α  2α  
3α   ( )36 α α+  

0  0  1  α  2α  
3α   ( )36 α α+  

1  1  2  1α +   3
1α +  

2
6α  ( )36 1α α+ +  

α  α  1α +  2α  2α α+  
3α α+  

2
6 6α α+ +  

3
6α  

2α  
2α   2α α+  

2
2α  

3 2α α+  6  3 2
6 6α α α+ +  

3α  
3α  

3
1α +  

3α α+  
3 2α α+  

3
2α  ( )3 26 1α α+ +  6α  

  2
6α  

2
6 6α α+ +  6  ( )3 26 1α α+ +  2

5 5α +  ( )3 26 1α α α+ + +  

( )36 α α+  ( )36 α α+  ( )36 1α α+ +  3
6α  

3 2
6 6α α α+ +  6α  ( )3 26 1α α α+ + +  3

5 5α α+  
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Substituting 3=α (3 is the primitive root of ( )7GF ) and Reduced Mod 7, we get the first Latin square. 

Table 2. First Latin square. 

0 1 3 2 6 4 5 

1 2 4 3 0 5 6 

3 4 6 5 2 0 1 

2 3 5 4 1 6 0 

6 0 2 1 5 3 4 

4 5 0 6 3 1 2 

5 6 1 0 4 2 3 

Next, we construct the table of second summation; we get second summation of the element of ( )7GF multiply by α  in the 

table of first summation principle column. 

Table 3. Second two way additive table of the elements of GF(7). 

+ 0  1  α  2α  
3α   ( )36 α α+  

0  0  1  α  2α  
3α   ( )36 α α+  

α  α  1α +  2α  2α α+  
3α α+  

2
6 6α α+ +  

3
6α  

2α  
2α   2α α+  

2
2α  

3 2α α+  6  3 2
6 6α α α+ +  

3α  
3α  

3
1α +  

3α α+  
3 2α α+  

3
2α  ( )3 26 1α α+ +  6α  

  2
6α  

2
6 6α α+ +  6  ( )3 26 1α α+ +  2

5 5α +  ( )3 26 1α α α+ + +  

( )36 α α+  ( )36 α α+  ( )36 1α α+ +  3
6α  

3 2
6 6α α α+ +  6α  ( )3 26 1α α α+ + +  3

5 5α α+  

1  1  2  1α +   3
1α +  

2
6α  ( )36 1α α+ +  

Substituting 3=α (3 is the primitive root of ( )7GF ) and Reduced Mod 7, we get the second Latin square. 

Table 4. Second Latin square. 

0 1 3 2 6 4 5 

3 4 6 5 2 0 1 

2 3 5 4 1 6 0 

6 0 2 1 5 3 4 

4 5 0 6 3 1 2 

5 6 1 0 4 2 3 

1 2 4 3 0 5 6 

Now, construct the table of third summation. We get third summation of the elements of ( )7GF multiply by 2α  in table of 

first summation principle column. 

Table 5. Third two way additive table of the elements of GF(7). 

+ 0  1  α  2α  
3α   ( )36 α α+  

0  0  1  α  2α  
3α   ( )36 α α+  

2α  
2α   2α α+  

2
2α  

3 2α α+  6  3 2
6 6α α α+ +  

3α  
3α  

3
1α +  

3α α+  
3 2α α+  

3
2α  ( )3 26 1α α+ +  6α  

  2
6α  

2
6 6α α+ +  6  ( )3 26 1α α+ +  2

5 5α +  ( )3 26 1α α α+ + +  

( )36 α α+  ( )36 α α+  ( )36 1α α+ +  3
6α  

3 2
6 6α α α+ +  6α  ( )3 26 1α α α+ + +  3

5 5α α+  

1  1  2  1α +   3
1α +  

2
6α  ( )36 1α α+ +  

α  α  1α +  2α  2α α+  
3α α+  

2
6 6α α+ +  

3
6α  

Substituting 3=α (3 is the primitive root of ( )7GF ) and Reduced Mod 7, we get the third Latin square. 
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Table 6. Third Latin square. 

0 1 3 2 6 4 5 

2 3 5 4 1 6 0 

6 0 2 1 5 3 4 

4 5 0 6 3 1 2 

5 6 1 0 4 2 3 

1 2 4 3 0 5 6 

3 4 6 5 2 0 1 

Now, construct the table of fourth summation. We get fourth summation of the elements of ( )7GF multiply by 3α  in table of 

first summation principle column. 

Table 7. Fourth two way additive table of the elements of GF(7). 

+ 0  1  α  2α  
3α   ( )36 α α+  

0  0  1  α  2α  
3α   ( )36 α α+  

3α  
3α  

3
1α +  

3α α+  
3 2α α+  

3
2α  ( )3 26 1α α+ +  6α  

  2
6α  

2
6 6α α+ +  6  ( )3 26 1α α+ +  2

5 5α +  ( )3 26 1α α α+ + +  

( )36 α α+  ( )36 α α+  ( )36 1α α+ +  3
6α  

3 2
6 6α α α+ +  6α  ( )3 26 1α α α+ + +  3

5 5α α+  

1  1  2  1α +   3
1α +  

2
6α  ( )36 1α α+ +  

α  α  1α +  2α  2α α+  
3α α+  

2
6 6α α+ +  

3
6α  

2α  
2α   2α α+  

2
2α  

3 2α α+  6  3 2
6 6α α α+ +  

Substituting 3=α (3 is the primitive root of ( )7GF ) and Reduced Mod 7, we get the fourth Latin square. 

Table 8. Fourth Latin square. 

0 1 3 2 6 4 5 

6 0 2 1 5 3 4 

4 5 0 6 3 1 2 

5 6 1 0 4 2 3 

1 2 4 3 0 5 6 

3 4 6 5 2 0 1 

2 3 5 4 1 6 0 

For seventh order Latin square, we get 6 mutual orthogonal Latin square (MOLS). Thus four Latin square have been 

obtained. We claim that four Latin square are MOLS. Therefore combined first, second, third and fourth Latin square. The four 

Latin square treatments occurs once and only once given below, 

Table 9. Construction of mutual orthogonal Latin square. 

0000 1111 3333 2222 6666 4444 5555 

1326 2430 4652 3541 0215 5063 6104 

3264 4305 6520 5416 2153 0631 1042 

2645 3056 5201 4160 1534 6312 0423 

6451 0562 2014 1603 5340 3125 4236 

4513 5624 0146 6035 3402 1250 2361 

5132 6243 1465 0354 4021 2506 3610 

 
The aim of this paper is to show the construction of 

balanced incomplete block design, where treatment 7=v , 

block 35=b , block size 4=k , replication 20=r and pair of 

each treatments 10=λ . Moreover using these theory several 

combination such as 

1,3,3,7,7 ===== λrkbv
 

2,6,3,14,7 ===== λrkbv
 

10,12,6,14,7 ===== λrkbv
 

1,6,2,21,7 ===== λrkbv
 

3,9,3,21,7 ===== λrkbv
 

25,30,6,35,7 ===== λrkbv
 

25,30,6,42,7 ===== λrkbv
 etc. 
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5. Application 

To construct BIBD, 4 mutual orthogonal Latin square of 

order 7 have been considered. Since block size is 35, 

therefore, choosing any 5 rows except first row from MOLS 

given in table 9. This paper has been taken last five rows of 

MOLS and treatment combination shown in the following 

table given below. 

Table 10. Construction of Balanced Incomplete Block Design. 

Block Treatment Combinations Block Treatment Combinations 

01 3 2 6 4 19 5 3 4 0 

02 4 3 0 5 20 3 1 2 5 

03 6 5 2 0 21 4 2 3 6 

04 5 4 1 6 22 4 5 1 3 

05 2 1 5 3 23 5 6 2 4 

06 0 6 3 1 24 0 1 4 6 

07 1 0 4 2 25 6 0 3 5 

08 2 6 4 5 26 3 4 0 2 

09 3 0 5 6 27 1 2 5 0 

10 5 2 0 1 28 2 3 6 1 

11 4 1 6 0 29 5 1 3 2 

12 1 5 3 4 30 6 2 4 3 

13 6 3 1 2 31 1 4 6 5 

14 0 4 2 3 32 0 3 5 4 

15 6 4 5 1 33 4 0 2 1 

16 0 5 6 2 34 2 5 0 6 

17 2 0 1 4 35 3 6 1 0 

18 1 6 0 3   

 
The above table 7== treatmentofnumberv ,

35== blockofnumberb , 4== sizeblockk , 

20== nreplicatior , 10== treatmentsofpairλ . 

Check the relation of BIBD 

i) 140== bkvr  

ii) ( ) ( ) ( ) ( )14201710,11 −×=−×−=− orkrvλ  

iii) ( ) 735, ≥≥ InequalityFishervb . 

The three parametric relations of BIBD are satisfied. 

Similarly construction of BIBD using MOLS of Galois field 

( )mGF 7 or ( )mpGF can be constructed in the same way. 

6. Conclusions 

When the experimental unit are heterogeneous and 

heterogeneity is occurred among the blocks then randomized 

block design (RBD) is applied. In RBD number of treatment 

and block size are equal. When number of treatment is 

greater than number of plot then RBD is failure to analyze 

the design. In that situation incomplete block design (IBD) is 

applied and analyze is done by balanced incomplete block 

design (BIBD). 

If the researchers want to know the impact of first 

beginner food, in that situation they apply two from four 

items of first beginner foods in six age groups of child and 

after certain period health status of Childs are observed. 

This problem can be solved by the theory of balanced 

incomplete block design and construction of BIBD is 

important issue. If the number of treatment is prime or 

prime power and block is the multiple of treatment then 

using MOLS, construct a BIBD. 
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