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Abstract 

This paper shows a structure to get the result to the uneven settle actions of few solid spherical particles declining in water as a 

Newtonian fluid by homotopy analysis method. The partial derivative is described in Modified Riemann liouville sense. This 

method performs very well in competence. Numerical results explain the whole consistency in used algorithm. 
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1. Introduction 

In current time, the fractional order differential equations 

have been happening in many substantial and engineering 

problems such like frequency dependent damp activities of 

material, diffusion processes, motion of a large thin plate in a 

Newtonian fluid, creeping and relaxation functions for 

viscoelastic materials. For more details on the applications of 

fractional derivatives in variety and statistical mechanics see 

[1-4]. Most fractional differential equations do not have 

accurate analytical solutions, therefore approximate and 

numerical techniques must be used. Learning of engrossed 

bodies motion in fluids has long been a subject of great 

interest due to its massive applications in nature and industry 

e.g. Sediment transport and deposition in pipelines. The 

settling of an entity, including a solid particle, bubble, or 

drop, both in a Newtonian fluid and in a non-Newtonian 

fluid, is reported by Bridge and Bennett [5] and Chhabra [6]. 

Haider and Levenspiel [7] offered several heave coefficients 

for spherical and non-spherical particles [8]. 

A particle falling vertically in a fluid under the influence 

of gravity will accelerate until the gravitational force is 

reasonable by the struggle forces, including buoyancy and 

drag forces. When the particle reaches to a constant velocity, 

it’s called as “terminal velocity” or “settling velocity”. The 

familiarity of the terminal velocity of solids declining in 

liquids is required in many industrial applications such as 

mineral processing, solid-liquid mixing, hydraulic transport, 

slurry systems, rasping water jets, fluidized bed reactors and 

so on. It is unambiguous that most of the pervious 

investigations are carried out for steady-state conditions, 

where the particles attain to terminal velocity, and slight of 

them has been reported about the unsteady motion of 

spherical objects. 

2. Mathematical Formulation 

For modeling the particle sediment phenomenon, consider 

a small, rigid spherical, non-deformable shape of diameter D, 

mass m and density  as particle which is falling in infinite 

extent filled water as an incompressible Newtonian fluid. 

Density of water  and its viscosity µ are known. We just 

considered the gravity, buoyancy and drag forces on particle 

and assumed sρ ρ< < . 

Rewriting force balance for particle, the equation of 

motion is as follows 

sρ

ρ
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where  is the drag coefficient, in the right hand side of 

the Eq. (1), the first term represents the buoyancy affect, the 

second term corresponds to drag resistance, and the last term 

is due to the added mass effect which is due to acceleration 

of fluid around the particle. The main difficulty to solve Eq. 

(1) is non-linear terms due to the non-linearity nature of the 

drag coefficient  Ferreira et al. [9], in their analytical 

study, suggested a correlation for of spherical particles 

which has good agreement with the experimental data in a 

wide range of Reynolds number, 
50 10Re≤ ≤

 
and DC  is 

given by 

24 1
1

48
DC R e

R e

 = + 
 

                           (2) 

The mass of the spherical particle is 

31

6
sm Dπ ρ=                                (3) 

Substituting Equations (2) and (3) into Eq. (1), we have 

( )2 0, 0 0
d w

a b w c w d w
d t

+ + − = =            (4) 

where 

( )31
2

12
sa Dπ ρ ρ= +                        (5) 

3b Dµπ=                                  (6) 

21

16
c Dπ ρ=                                    (7) 

( )31

6
sd D gπ ρ ρ= −                           (8) 

In recent years there has been a great deal of interest in 

fractional differential equations. These equations arise in 

continuous time random walks, modeling of anomalous 

diffusive and sub diffusive systems, unification of diffusion 

and wave propagation phenomenon, and simplification of the 

results and more applications were studied in [10, 11]. 

Our concern in this work is to consider the analytical 

solution of the nonlinear differential equation with time-

fractional derivatives of the form: 

�
���

�	��
+ �	 + 
	� − 
 = 0		�0� = 0	0 < � ≤ 1, � >	 (9) 

Equation (9) reduces to the classical nonlinear differential 

equation (4) for 1β = . The objective of this paper is to 

extend the application of the homotopy analysis method 

(HAM) by using modified Reimann-Liouville derivative [12-

16] to obtain analytic solutions to the time-fractional 

equation of some spherical particles settling in water. The 

homotopy analysis method is a computational method that 

yields analytical solutions and has certain advantages over 

standard numerical methods. It is free from rounding off 

errors, as it does not involve discretization, and does not 

require large computer obtained memory or power. The 

method introduces the solution in the form of a convergent 

fractional series with elegantly computable terms. 

The HAM is developed in 1992 by Liao in [17-26]. By the 

present method, numerical results can be obtained with using 

a few iterations. The HAM contains the auxiliary parameter

ℏ , which provides us with a simple way to adjust and control 

the convergence region of solution series for large values of t. 

Unlike, other numerical methods are given low degree of 

accuracy for large values of t. Therefore, the HAM handles 

linear and nonlinear problems without any assumption and 

restriction. 

3. Modified Riemann-Liouville 

Derivative 

Assume : , ( )h R R x h x→ →
 
denote a continuous (but not 

necessarily differentiable) function and let the partition 0h >  

in the interval [0,1]. Through the fractional Riemann 

Liouville integral 

1
0

0

1
( ) ( ) ( ) , 0

x

xI h x x f dβ βψ ψ ψ β
α

−= − >
Γ ∫     (10) 

The modified Riemann-Liouville derivative is defined as 

0

0

1
( ) ( ) ( ( ) (0)) ,

( )

xn
n

x n

d
D h x x f f d

n dx

β βψ ψ ψ
β

−= − −
Γ − ∫  (11) 

Where [0,1], 1x n nβ∈ − < ≤ and 1n ≥  

G. Jumarie’s derivative is defined through the fractional 

difference 

0

( 1) ( ) ( 1) [ ( ) ],kFW h x f x k h
k

β β β
β

∞  
∆ = − = − + − 

 
∑   (12) 

Where ( ) ( )FW h x h x h= + . Then the fractional derivative is 

defined as the following limit, 

( )
0

( )
limh

f x
f

h

β
β

β→
∆=                             (13) 

The proposed modified Riemann–Liouville derivative as 

shown in equation (11) is strictly equivalent to equation. (13). 

Meanwhile, we would introduce some properties of the 

fractional modified Riemann–Liouville derivative in 

equations. (14) and (15). 

(i) Fractional Leibniz product law 

DC

DC

DC
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( ) ( )
0 ( )xD wv w v wvβ β β= +                     (14) 

(ii) Fractional Leibniz formulation 

0 0 ( ) ( ) (0), 0 1x xI D h x h x hβ β β= − < ≤            (15) 

Therefore, the integration by part can be used during the 

fractional calculus 

1 1

11 1 1

( ) ( )( ) /
b a

ab a b
I w v wv I wvβ β β

β = −             (16) 

(iii) Integration with respect to ( )d βψ . 

Assume ( )h x denote a continuous R R→  function, we use 

the following equality for the integral with respect to ( )dw α
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1

0

0

1
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1
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x
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x

I h x x f d
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β β

β
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     (17) 

4. Homotopy Analysis Method (HAM) 

We consider the following differential equation 

( ), 0,HD w x t  =                                      (18) 

Where HD is a nonlinear operator for this problem, x and t 

denote an independent variables, ( ),w x t  is an unknown 

function. 

In the frame of HAM, we can construct the following 

zeroth-order deformation: 

( ) ( ) ( )( ) ( ) ( )( )01 , ; , , , ; ,q L w x t q w x t q H x t HD w x t q− − = ℏ  (19) 

where [ ]0, 1q ∈  is the embedding parameter, 0≠ℏ  is an 

auxiliary parameter, ( ), 0H x t ≠  is an auxiliary function, L is 

an auxiliary linear operator, ( )0 ,w x t  is an initial guess of 

( ),w x t  and ( ), ;w x t q  is an unknown function of the 

independent variables x, t and q. 

Obviously, when 0q =  and 1,q =  it holds 

( ) ( )0, ;0 , ,w x t w x t= ( ) ( ), ;1 , ,w x t w x t=       (20) 

Using the parameter q, we expand ( ), ;W x t q  in Taylor 

series as follows: 

( ) ( ) ( )0

1

, ; , , ,r
r

r

w x t q w x t w x t q

∞

=

= +∑                  (21) 

where 

( );1

0!

r

r r

w t q
w

qr q

∂
=

=∂
                    (22) 

Assume that the auxiliary linear operator, the initial guess, 

the auxiliary parameter ℏ  and the auxiliary function ( ),H x t  

are selected such that the series (19) is convergent at 1q = , 

then due to (20) we have 

( ) ( ) ( )0

1

, , ,r

r

w x t w x t w x t

∞

=

= +∑               (23) 

Let us define the vector 

( ) ( ) ( ) ( )}{ 0 1, , , , ,..., ,n nw x t w x t w x t w x t=          (24) 

Differentiating (11) r times with respect to the embedding 

parameter q, then setting 0q =  and finally dividing them by

!r , we have the so-called rth-order deformation equation 

( ) ( ) ( ) ( )1 1, , , ,r r r r rL W x t w x t H x t R wχ − − − =  ℏ     (25) 

where 

( ) ( )
( )( )1

1 1

;1

01 !

r

r r r

HD w t q
R w

qr q

−

− −

∂
=

=− ∂
,          (26) 

and 
0 1,

1 1.
r

r

r
χ

≤
=  >

                                (27) 

Finally, for the purpose of computation, we will 

approximate the HAM solution (23) by the following 

truncated series: 

( ) ( )
1

0

.

r

r k

k

t w tϕ
−

=

=∑                                 (28) 

5. Applications 

In this section, we demonstrate the efficiency and 

effectiveness of the Homotopy analysis method with 

modified Riemann–Liouville derivative. 

For the case, a = b = c = d = 1, eq. (9) becomes 

2( )
( ) ( ) 1 0, 0 1,

d w t
w t w t

dt

β

β β+ + − = < ≤    (29) 

Subject to the initial condition 

(0) 0.w =  

Constructing the following Homotopy, According to (19), 

the zeroth-order deformation can be given by 
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We can start with an initial approximation ( )0 , 0w x t =  

and we choose the auxiliary linear operator 

( )( ) ( ), ; , ; ,tL w x t q D w x t qβ=  

with the property 

( ) 0,L C =  

where C is an integral constant. We also choose the auxiliary 

function to be 

( ), 1.H x t =  

Hence, the rth-order deformation can be given by 

( ) ( ) ( ) ( )1 1, , , ,r r r r rL w x t w x t H x t R uwχ − − − =  ℏ  
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0
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r
t
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i
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−

− − − − −
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Now the solution of the rth-order deformation equations 

(24) for 1r ≥  become 

( ) ( ) ( )1
1 1, , .r r r r rw x t w x t L R wχ −

− − = +  ℏ       (31) 

Consequently, (for 1= −ℏ ) the first few terms of the HAM 

series solution are as follows: 

( )0 , 0w x t = , 
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t
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β
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and so on. Hence, the HAM series solution (for 1)= −ℏ  is 

( ) ( ) ( ) ( )0 1 2, , , , ..w x t w x t w x t w x t= + + +  
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 (32) 

For 1,β =  the equation (31) can be reduced as 

2 3 4 51 1 7 1
( ) ...

2 6 24 24
w t t t t t t= − − + −                   (33) 

6. Conclusion 

In given paper, we use HAM to get the solutions of the 

Equation of some spherical particles settling in water. The 

HAM is straightforward without restrictive assumptions, and 

the components of the series solution can be easily computed 

using any mathematical symbolic package. The paper 

presents that homotopy analysis method can easily be used to 

construct solutions for a broad class of nonlinear problems 

with fractional derivatives. 

Nomenclature 

a1, b1, c1, d1 Constants Acc Acceleration [ ] 

t Time [s] w Velocity [ ] 

 Drag 

coefficient 
D 

Particle diameter 

[m] 

g 
Acc due to 

gravity [ ] 
m Particle mass [kg] 

µ 
Dynamic 

viscosity [ ] 
 Fluid density [ ] 

Spherical particle density [kg/m
3
] 
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