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Abstract 

Item Response Theory (IRT) has enjoyed increased interest in recent years as a method for scaling health-related 

constructs. However, the context of this application is different from the context of IRT’s development. The shift in 

context has important implications for proper model specification. This paper reviews the common one, two, and three 

parameter IRT models, discusses their limitations as used in healthcare research, and argues for the four parameter 

hierarchical model as an alternative. The use of IRT as a pragmatic means to test item bias has merit, but the general use 

of IRT in healthcare research without consideration of underlying assumptions may lead to a less appropriate application. 

Healthcare research would benefit from development of models such as the 4-parameter IRT to account for plausible 

underlying assumptions. 
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1. Introduction 

In health research, Item Response Theory (IRT) has 

gained advocacy in recent years as a method for 

constructing, combining, and assessing health-related 

scales; for example, much of a 2000 issue of Medical Care 

was dedicated to articles on IRT (Cella and Chang 2000; 

Hambleton 2000; Hays, Morales, and Reise 2000; 

McHorney and Cohen 2000; Ware, Bjorner, and Kosinski 

2000). IRT is often used to measure unobservable 

constructs such as health status and quality of life. This use 

departs from IRT’s origin in test development—a departure 

with important consequences. This paper motivates 

extending the current IRT models to better represent 

phenomena of interest to healthcare researchers. A critique 

of common models is given and an argument for their 

extension provided. The goal is to spur further interest in 

creating methods for estimation and testing of extended 

models. 

This paper addresses scale development in a context 

presupposing a latent quality that generates variation in 

manifest variables as opposed to a context in which 

manifest variables are combined to form an index. The 

former is the domain of psychometric techniques such as 

classical scaling, factor analysis and IRT (Nunnally and 

Bernstein 1994); the latter is the domain of Clinimetrics 

(de Vet, Terwee, and Bouter 2003a, 2003b; Fava and 

Belaise 2005; Fayers and Hand 2002; Feinstein 1982, 1983, 

1987; Marx et al. 1999; Streiner 2003). Feinstein (Feinstein 

1987), the father of the clinimetric terminology, defines the 

clinimetrics as “arbitrary ratings, scales indexes, 

instruments or other expressions that have been created as 

“measurements” for those clinical phenomena that cannot 

be measured in the customary dimensions of laboratory 

data.”; what Fayers and Hand (Fayers and Hand 2002) 

describe as choosing and emphasizing “…the most 

important attributes to be included in the index, using 

multiple items which are not expected to be homogeneous 

because they indicate different aspects of a complex 

clinical phenomenon.” See for examples the Apgar scale 

for newborns (Feinstein 1999) or the Jones criteria for 

rheumatic fever (Feinstein 1982, 1983). If one seeks to 

index a heterogeneous complex such as clinical syndromes 
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or indicators such as socio-economic status (and arguably 

quality of life measures as well), then a clinimetric 

approach may be advisable over a psychometric one that 

assumes underlying latent qualities. The former method 

does not require correlation among the manifest variables, 

whereas the latter depends on it.  Notwithstanding the 

merits of a clinimetric approach, this paper focuses solely 

on a critique of IRT. Moreover, the focus is on models of 

dichotomous responses in which the probability of 

response is monotonically increasing with the latent trait; 

unfolding response models (e.g. (Johnson and Junker 

2003)), in which monotonicity is not imposed, are not 

considered here. 

When IRT is used to represent the correspondence 

between a latent ability and the probability of correctly 

performing a specific test of that ability, the test is a direct 

manifestation of the underlying attribute. For example, 

endorsing as true the statement “1 + 1 = 2” directly tests 

the ability of an individual to add numbers (assuming 

unidimensionality).  Greater ability corresponds to higher 

probability of a correct answer if the test subject intends to 

give the correct answer.  The correct answer is invariant 

over the scale of abilities: one plus one equals two 

regardless of the ability of the test subject. Similarly, a test 

of reading comprehension would entail performing a task 

that requires reading comprehension.  For example, the 

statement, “the first paragraph of this paper addresses the 

use of IRT in healthcare research” would measure reading 

comprehension.  The set of possible answers {true, false} 

contains the correct answer regardless of the test subject’s 

ability.  Even if the test question were open ended such as 

“what is the topic of the first paragraph?” there would be a 

correct answer (or set of correct answers) and a 

corresponding set of incorrect answers (possibly only 

defined as not correct and therefore not explicitly listed).   

In general, a test of ability requires an exhibition of that 

ability in conjunction with the assumption that the test 

subject engages the ability.  This is often not the situation 

in health research.  In health research IRT is often used to 

measure an underlying construct based on responses being 

correlated with the construct but not direct tests of the 

construct.  Examples include measuring quality of life 

(Leplege et al. 1997), severity of illness such as asthma 

(Morris et al. 1996), severity of effects such as pain (Kopec 

et al. 1996; Tesio, Granger, and Fiedler 1997), and health 

behaviors such as drug and alcohol abuse (Kirisci, Tarter, 

and Hsu 1994; Muthen 1996). 

Quality of life is supposed to generate a positive 

response to the statement “I generally enjoy what I do” 

(Leplege et al. 1997).  Notice, however, that because 

quality of life is not defined by the act of endorsing that 

statement, the response is not a test of quality of life: it has 

no independently correct answer. Here the subject is not 

assumed to intend answering correctly, only honestly.  

Indeed, if the subjects were intending to answer according 

to some perceived notion of correctness, they would bias 

the measurement to the extent that they were not answering 

honestly.  This weakening of the assumption of intended 

correctness adds an element of uncertainty to the measure 

at any given level of the underlying trait.  Where 

previously we knew whether a given answer was correct, 

now we can only assume the answer was honestly provided: 

both endorsement and non-endorsement can be proper for 

each individual at a given trait level.  This is where the use 

of IRT in healthcare research often departs from its use in 

testing; a departure with implications for model 

specification. 

2. Parameterization 

Common parameterizations in  healthcare research of 

item characteristic curves using the logistic model are 

given in the first 3 rows of Table 1 along with 

corresponding graphs.  The 1-parameter model allows each 

item to differ in its discrimination parameter  (aj), thereby 

differently discriminating the underlying trait.  The 2-

parameter model also allows items to differ in location (dj), 

thereby allowing each item to be sensitive to different parts 

of the underlying trait scale. The classic 3-parameter model 

allows for different lower limits to the probability of 

endorsing the item as the trait level decreases. The 3-

parameter model was an important step in representing 

ability tests for which the answer can be guessed; it 

explicitly recognized that is such cases even a person with 

no ability has a nonzero probability of endorsing the 

correct answer if they guess. The classic 3-parameter 

model assumes that as the trait increases, the probability of 

endorsing the item approaches 1.  

Under the assumption that a subject intends to answer 

correctly and the fact that success is directly a function of 

ability, it is reasonable to assume that the probability of a 

correct response on a given test is monotonically 

nondecreasing and approaches 1 as ability increases.  In 

other words, for any level of test difficulty there is a level 

of ability such that the probability of correctly performing 

the test is arbitrarily close to 1. This requires the modeling 

assumption that ability can in principle increase without 

bound. It could be argued that because the test must be 

conceptualized and identified with a correct answer set, the 

very fact that a test question is posed presupposes an extant 

minimally sufficient corresponding ability; otherwise a 

correct answer would not be identified.  

When the underlying trait is not directly measured by the 

test and any answer is appropriate for honestly responding 

subjects, it is less plausible to assume that the upper limit 

of the probability converges to 1.  It is not necessary that 

there exist a level of the underlying trait at which the 

probability of endorsing a statement in a survey need 

approach 1 arbitrarily close.  This suggests that the IRT 

models for these measurement tasks based on dichotomous 

responses ought to include an upper limit parameter.  For 

example, as shown in row 4 of Table 1, using the Logit 
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model the specification would be  
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where Lj is the probability observation i endorses item j as 

trait τ → −∞ (the trait goes infinitely low); Uj is the 

probability of endorsing the item as τ → ∞ (the trait goes 

infinitely high); and a and d are the scale and location 

parameters of the item (discrimination and “difficulty” 

respectively).  The corresponding figure given in Table 1 

shows two specifications: One, represented by the solid 

line, corresponds to a 2-parameter model with parameters a 

= 0.5, d = 0, L = 0, and U = 1; the other, represented by the 

dashed line, has parameters a = 0.5, d = 0, L = 0.2, and U = 

0.8. Not only are the limiting probabilities different, but 

with the same discrimination parameter a, the actual 

discrimination is influenced by the effect of the difference 

in upper and lower limits on the slope: 
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Table 1. Logistic item characteristic curves for 1, 2, 3, and 4 parameter models. The 1-parameter model allows different discrimination parameters (aj); 

the 2-parameter model allows different discrimination and intercepts (dj); the 3-parameter model allows different discrimination, intercepts, and lower 

limits (Lj); the 4-parameter model allows different discrimination, intercepts, lower limits, and upper limits (Uj). 
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4-parameter model: 
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Setting L = 0 and U =1 in this equation yields the slope 

for the usual Logit IRT model. 

Simplifications available for some tests of ability are 

also not as plausible in the health care context.  For a test 

of ability, individuals with no ability can randomly guess at 

the correct answer; if all items on the test have an equal 

number of possible answers, then the probability of a 

correct guess is the same across items and Lj = L for all 

items j. The figure in Table 1 associated with the 3-

parameter model shows a graph with the lower limit 

probability equal to 0.5 associated with random guessing 

the correct answer among a dichotomous choice set. In the 

present context, however, assuming a common probability 

of endorsing all items when a person’s latent trait is 

infinitely negative is not plausible (although statistically 

testable in the model).  

Methods papers written to advocate the use of IRT in 

healthcare research tend to stay with 1, 2, or 3 parameter 

models (Revicki and Cella 1997; van Alphen et al. 1994). 

Although the 4-parameter alternative may require a fairly 
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large sample size and considerable computation time, it is 

proposed here that the 4-parameter model can better 

represent some phenomena of interest in healthcare 

research, and given the continual improvement in computer 

computational capabilities, development of estimation and 

testing methods for the 4-parameter model now seems 

warranted. By accepting a 3-parameter model, one has 

accepted the need to properly model the lower limit of the 

item characteristic curve. The argument for the 4-parameter 

model follow a similar logic, only applied to the upper 

limit of the item characteristic curve. 

The key assumptions that differentiate the two, three, 

and four parameter models are those regarding the limiting 

probabilities of endorsing an item as the latent trait or 

quality decreases and increases. The 2-parameter model 

fixes the lower limit to 0 and the upper limit to 1; this 

implies that those at one end of the scale will certainly not 

endorse the item whereas those at the other end of the scale 

will most certainly endorse the item.  The classic 3-

parameter model fixes the upper limit to 1 but allows the 

lower limit to be freely estimated; this implies that those at 

one end of the scale will always have some non-zero 

probability of endorsing the item. The 4-parameter model 

allows both the lower and upper limits to be free, implying 

at both ends of the scale responses are less than certain. 

Clearly the 2 and 3-parameter models are merely special 

cases of the 4-parameter model.  As such, the 4-parameter 

model represents a more general monotonic item 

characteristic curve of which the other models are special 

cases. Although this paper focuses on the 4-parameter 

model, it should be noted that an alternative 3-parameter 

model may be appropriate in certain circumstances as well. 

Specifically, if the lower limit is fixed to 0 but the upper 

limit is free, then we have a 3-parameter model that implies 

a certainty of response for the lower limit of the underlying 

trait or quality but a less than certain response in the upper 

limit.  

Making appropriate a priori assumptions regarding these 

models will depend on the nature of the problem being 

studied.  Consider for example a study by Landrum et. al. 

(Landrum, Bronskill, and Normand 2000) which include in 

their analysis of hospital quality an indicator of coronary 

angiography (CA) among patients for which angiography 

is indicated as a necessary procedure by consensus 

guideline criteria. Hospital quality is considered a latent 

trait that generates a probability of giving CA to patients 

for whom it is indicated as necessary. They use a 2-

parameter item characteristic curve, thereby assuming the 

probability of providing CA approaches 0 as quality 

becomes decreasingly low, and the probability of providing 

CA approaches 1 as quality becomes increasingly high. 

Alternatively, however, we might consider that consensus 

guidelines are not sufficiently subtle to identify the specific 

needs of each individual and some patients who meet the 

guideline criteria for needing CA can be properly judged as 

not a candidate for CA by a hospital of the highest quality. 

In this case, we may suppose that the probability of 

providing CA to guideline-identified patients is less than 1 

even for the highest quality of hospital care. Hence, a 3-

parameter model in which the lower limit is fixed to 0 and 

the upper limit is free may be a better selection. Moreover, 

hospitals may give CA to some patients that have counter 

indications not unambiguously identified in the consensus 

guidelines and therefore the lowest possible quality 

hospitals may still have a non-zero probability of giving 

CA. In this case, a 4-parameter model that allows both 

upper and lower limits to be free may be appropriate. The a 

priori selection of a model depends on how the problem is 

conceptualized and what the observed variables represent. 

Clearly the development of statistical tests to empirically 

adjudicate model specification would be advantageous in 

this case. 

3. Parameter Heterogeneity 

Another departure from the traditional IRT development 

is that a test of ability (e.g. the ability to add numbers) 

provides for a level of independence not available in health 

measurement of constructs such as quality of life.  Each 

observation from a population with a given ability level 

necessarily has the same probability of a correct answer 

(assuming unidimensionality); if the probabilities are 

different, then the ability must also be different.  In the case 

of measuring quality of life, this independence does not 

hold.  Each individual will likely have a different 

characteristic function associated with each item due to the 

influence of their life experience on their interpretation of 

the statement and the threshold of the trait corresponding to 

endorsing the statement.   

The standard IRT model is expressed as  

P(yij = 1| βj, θi) = g(βj, θi) 

where yij = 1 indicates observation i correctly endorses 

item j; βj is a vector of parameters associated with the test 

item j; and θi is the underlying ability of person i.  The only 

variation associated with individuals in this model is 

associated with variation in ability θi.  It is assumed that βj 

is invariant across individuals.  The formulation for 

constructs such as quality of life is better represented as  

P(yij = 1| βij, θi) = g(βij, θi) 

{{REMOVE INDENT}}in which the parameters of the 

distribution are a function of the individual. This lack of 

independence is not a function of additional latent traits (i.e. 

it is not an issue of multidimensionality). Rather than a 

function of differential abilities on unaccounted dimensions, 

it is a function of individuality. Each person may have the 

same ability to read and understand the sentence: however, 

they have a different correspondence between the mutual 

understanding of the English and the level of the 

underlying construct. Note that where English can be 

commonly understood among people, the correspondences 
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with internal constructs that are not directly measured are 

less likely to generate a mutual understanding because they 

are not ostensibly presented for common learning. 

To the extent that the variation in β is explained by 

categories in a population, the model is said to exhibit 

differential item functioning. However, statistically 

identifying differential item functioning requires the prior 

identification of an appropriate categorization; for example, 

gender race, culture, etc. And, when differential item 

functioning is identified for some partition of the 

population, the within group variation of the item 

characteristics is assumed invariant. This is an assumption 

that is not necessarily plausible when all answers are 

deemed “correct” if the reply to the test statement is honest. 

Under these circumstances the item parameters (i.e. 

discrimination, difficulty, upper and lower limits) should be 

treated as individual-specific parameters (i.e., a vector βij) 

and estimation focused on appropriate summary statistics 

of the distribution of those parameters—for example, mean 

values: 

P(yij = 1| βij, θi) = g(βij, θi), 

βij~F(βj). 

In this case the parameter vector βj represents the 

parameters of the distribution F describing the individual-

specific parameters βij. An appropriate model to account 

for this non-categorical variation in the item parameters is 

a hierarchical modeling scheme whereby conditional 

distributions of the parameters can be specified as 

functions of specific individual characteristics.  This may 

be addressed through the use of random coefficient models 

or Bayesian methods (Albert 1992; Ghosh et al. 2000; 

Landrum et al. 2000; Sahu 1998; Tsutakawa and Lin 1986). 

4. Pragmatic Utility 

Though a good theoretical motivation is desirable, one is 

not always necessary. One set of studies that used model fit 

as their criteria for assessment entailed the comparison 

between Likert and Rasch scoring methods for a common 

physical functioning scale (McHorney, Haley, and Ware 

1997; Raczek et al. 1998).  The authors argue for the use of 

the Rasch method due to its superior performance, though 

the findings were less definite in the McHorney study. 

Another useful application of IRT in this body of research 

is the testing of some specific questions regarding the 

nature of a preexisting scale; specifically, the use of IRT to 

investigate item bias. Typically, these research projects are 

focused on determining if a particular existing instrument 

manifests differential item bias across specified groups of 

interest. The importance of these inquiries is to assure that 

these instruments can provide for consistent conclusions.  

For example, measures used to determine dementia have 

been criticized for item bias across racial and educational 

groupings.  Teresi et al. (1995) investigated the merit of 

these assertions by using IRT models to test for differential 

item bias.  The focus of their study was not the 

development of a new scale based on IRT methods of 

scoring; instead, they were specifically addressing the 

hypothesis of DIF without impugning the scoring 

methodology of the overall test.  They found a number of 

items that exhibited item bias across groups based on race 

and based on education level.  It is interesting to note that 

they tested the usual one, two and three parameter models, 

but did not apparently consider a four-parameter model as 

an option. 

A second example extends the usefulness of IRT to 

language translation equivalence.  The SF-36, a common 

health status survey, has been translated into multiple 

languages. This creates the problem of achieving 

translation equivalence.  In order for the instrument to 

operate in the same fashion across languages and cultures, 

the items must be translated in a way such that its 

association with the underlying construct remains invariant 

up to the transformation in the scale units.  Bjorner et al. 

(1998) evaluated translation equivalence using IRT to 

investigate differential item functioning across different 

countries where the survey was translated into the 

appropriate language.  Their assertion is that if an item is 

functioning in a similar fashion across cultures, then its 

translation must be appropriate. Conversely, if DIF is found, 

then the translation is not appropriate and should be 

modified. This test of translation equivalence automatically 

accounts for context and culture; it is not simply a test for 

correct word translations and corresponding grammatical 

consistency. 

These are examples of appropriate uses of classic IRT 

models in healthcare research in the absence of a serious 

theoretical base.  However, one could object this leniency 

is contrary to the lack of charity in the first part of the 

paper. Do not those concerns apply to the DIF examples 

just presented? Yes, but they are not as damaging.  Even if 

the item parameters vary within groups, the estimates 

based on groups can be considered the mean values of the 

groups’ distributions of item parameter values. An IRT 

comparison between groups for DIF is then testing if the 

item functions on average differently between groups. 

Nonetheless, applying a 4-parameter random-coefficient 

model in these applications may prove useful as well. 

5. Conclusion 

IRT is a theory that can benefit healthcare research, but 

the extent and limitations of its usefulness has yet to be 

fully explored. The use of IRT as a pragmatic means to test 

item bias has merit; however, the general use of IRT in 

healthcare research without consideration of underlying 

assumptions may lead to a less appropriate application. 

This failing has important implications for model 

specification. Healthcare research would benefit from the 

investigation of extended models such as the 4-parameter 

models as discussed above to determine whether the 

proposed extensions provide a useful addition to HSR 

healthcare research methods. Specifically, healthcare 
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research would benefit greatly from efforts to develop 

feasible and efficient estimators, determine model 

identification criteria, and provide model specification tests 

(e.g., determination of unidimensionality and the need for 

the heterogeneity in item parameters). At a minimum, such 

investigations will provide insight into the empirical 

consequences of not extending the current models when 

theory suggests otherwise: it may turn out that ignoring the 

theoretically implied extensions comes at little empirical 

cost, or specific circumstances may be determined where 

such simplifying assumptions are too costly to ignore.  In 

either case, the methods of healthcare research will benefit 

from researchers extending the currently used IRT models 

to account for plausible underlying assumptions. 
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