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Abstract 

The conventional method of analysing the brain tissue pathologies on Diffusion Weighted-Magnetic Resonance (DW-MR) 

images is by human inspection. Such operator-assisted classification techniques are not viable for large amounts of 

medical data and are generally non-reproducible. The use of neural networks shows a great potential in this area to carry 

out fast, accurate and automatic data classification. In the present study, Probability Neural Network (PNN) architecture 

was employed to develop an automated classification model based on the quantified signal intensity variations on DW-MR 

images, derived from the subjects with brain pathologies, using High Frequency Power (HFP) parameter. The PNN models 

were designed to provide important reference in judging the timing and developmental stages of the subjects with cerebral 

infarction and Intracerebral Haemorrhage (ICH), and help in carrying out the differential diagnosis of the subjects with 

brain tumors, namely, glioma and meningioma. The PNN models were able to accurately (100%) categorize ICH subjects 

into their respective stages, and presented an overall efficiency of 96.67% in classifying the infarct subjects. Also the 

model was able to clearly differentiate (100%) between the subjects with glioma and meningioma. Consequently, the PNN 

models developed in the present work were helpful in providing valuable information about the brain tissue pathologies, 

which could speed up the diagnosis and execution of treatment. Further, it could help in providing timely and appropriate 

treatment to the subjects with these brain pathologies, to protect them from additional damage to their brain tissues. 
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1. Introduction 

Automated classification in medical images is motivated 

by the need of high accuracy when dealing with a human life. 

Also, computer assistance is demanded in medical 

organizations due to the fact that it could improve the results 

of humans, so that false negative cases are kept at a very low 

rate [1]. Conventional methods of monitoring and 

diagnosing brain tissue pathologies rely on detecting the 

presence of particular features, by a human observer. Due to 

large number of patients several techniques for automated 

diagnostic systems have been developed in recent years to 

attempt to solve this problem. Such techniques work by 

transforming the mostly qualitative diagnostic criteria into a 

more objective quantitative feature classification problem 

[1]. Various kinds of neural network architectures including 

MultiLayer Perceptron (MLP) neural network, Radial Basis 

Function (RBF) neural network, Self-Organizing Map 

(SOM) neural network and Probability Neural Network 

(PNN) have been proposed [2] to classify patterns based on 

learning from examples. Different neural network 
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paradigms employ different training rules, but all in some 

way determine pattern statistics from a set of training 

samples, and then classify new patterns on the basis of these 

statistics [3]. However, because of ease of training and a 

sound statistical foundation in Bayesian estimation theory, 

PNN has become an effective tool for solving many 

classification problems [3-5]. The main advantages that 

discriminate PNN are fast training process, an inherently 

parallel structure, guaranteed to converge to an optimal 

classifier as the size of the representative training set 

increases, and training samples can be added or removed 

without extensive retraining [6]. 

The purpose of the present work was to devise an 

automated brain tissue pathology classification model, by 

using prior information about the signal intensity 

characteristics of the brain pathology on Diffusion 

Weighted-Magnetic Resonance (DW-MR) images of the 

human brain. The evolution/appearance of the signal 

intensity characteristics on DW-MR images of the brain in 

the axial plane were analysed to identify the different levels 

of changes taking place in the subjects with the brain tissue 

pathologies, namely, cerebral infarction, Intracerebral 

Haemorrhage (ICH) and brain tumors (glioma and 

meningioma). An effort was made to grade the signal 

intensity variations on DW-MR images using High 

Frequency Power (HFP) values. The HFP values derived 

from the pathology side were compared to the corresponding 

HFP values obtained from the respective contralateral 

normal hemispheres of the subjects. Further, quantitative 

brain pathology PNN models were developed using the HFP 

parameter that were employed to automatically classify the 

stages of cerebral infarction [7], categorize the stages of ICH 

[8], and differentiate between the types of brain tumors 

(glioma and meningioma). The PNN models developed in 

the present work could positively be employed to derive 

valuable information about the particular brain tissue 

pathology, which may possibly assist the medical personnel 

in the speedy diagnosis and execution of treatment. Further, 

the proposed computer based technique would simplify the 

estimation process and provide information essential for the 

further management and therapeutic decisions, even in the 

absence of a medical expert. 

2. Materials and Methods 

2.1. Clinical Data and Diffusion Weighted 

Imaging 

The clinical data in the present study is obtained from 

‘RAGAVS’ Diagnostic and Research Center, Bangalore, 

India, and Vikram Hospital, Bangalore, India. The ethics 

approval is obtained from the committee of clinical research 

at the ‘RAGAVS’ Diagnostic and Research Center, and 

Vikram Hospital, to carry out the investigations on the 

clinical data provided. Applying the clinical inclusion 

criteria, we identified 98 cases with clinically definite 

cerebral infarctions with known symptom onset, which were 

employed in training and testing the PNN model. This 

population consisted of 64 male and 34 female subjects, 

ranging in age from 25 to 95 years (mean, 62.87 years). 

Diffusion Weighted - Magnetic Resonance Imaging 

(DW-MRI) examinations were performed on 24 subjects 

within 24 hours of symptom onset; 15 subjects between days 

1 and 4; 38 subjects between days 5 and 9; 12 subjects 

between days 10 and 14; and 09 subjects after day 15. 

Among all the ICH subjects admitted, we retrospectively 

selected 42 cases that showed isolated ICH without the 

presence of underlying tumor or infarction on initial 

radiologic and follow-up examinations, which were 

employed in training and testing the PNN model. This 

population consisted of 29 male and 13 female subjects, 

ranging in age from 28 to 85 years (mean, 58.62 years). 

DW-MRI examinations were performed on 09 subjects 

within 24 hours of symptom onset; 05 subjects between days 

1 and 7; 15 subjects between days 7 and 14; and 13 subjects 

after 14 days.  

Findings of DW-MRI examinations performed on 22 

cases (15 male, 07 female; mean age, 56.55 years; age range, 

39 – 83 years) with clinically proved glioma and 12 cases 

(04 male, 08 female; mean age, 56.50 years; age range, 26 – 

81 years) with clinically proved meningioma, were also 

retrospectively selected, and employed in training and 

testing the PNN model. 

All the subjects underwent clinical Magnetic Resonance 

(MR) imaging with 1.5 Tesla symphony maestro class MR 

scanning system from Siemens. DW-MRI was performed by 

using a multisection, single-shot, spin-echo, echo-planar 

pulse sequence with following parameters: Repetition Time 

[TR] = 3200 ms, Echo Time [TE] = 94 ms, acquisition 

matrix = 128 x 128, Field of View [FOV] = 230 mm x 230 

mm, and diffusion gradient value of b = 1000 s/m
2
 along 19 

axial slices, 5 mm thick slice and intersection gap of 1.5 mm. 

2.2. Signal Intensity High Frequency Power 

DW-MRI makes it to visualize and measure the altered 

rates of water diffusion, by producing a bright imaging 

appearance in the area of the brain, affected by pathology [9, 

10]. Consequently, on examining the spatial intensity 

variation distribution on DW-MR images for the subjects 

with brain pathology, it is observed that the signal intensity 

is not uniformly distributed over the entire DW-MR image. 

There are abrupt jumps in the signal intensity, in the area of 

pathology, in contrast to the other healthy areas of the brain, 

where the signal intensity distribution is almost uniform [8, 

11-14]. Exploring the power spectrum of the DW-MR 

intensity image for these subjects would thereby result in a 

higher value for the higher spatial frequency power 

component out of the total power spectrum, in the area of 

brain pathology. In contrast, the higher spatial frequency 

power component on the contralateral normal hemisphere 

(mirror image) of the same subject is considerably low. 

Consequently, the HFP value in the area of brain pathology 

is much elevated in comparison to the HFP value on the 

contralateral normal hemisphere of the same subject. 
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Consider an input image, f(x, y), corresponding to an 

image size represented by (M x N) pixels. The Fourier 

spectrum, F(u, v), of the image, f(x, y), is evaluated. The 

spatial frequencies and their distribution are analysed by 

performing the two-dimensional Discrete Fourier Transform 

(DFT) using MATLAB version 7.7. The spatial frequencies 

(u and v) are denoted by cycles per pixel, since the image 

size (distance) for the analysis is given in terms of pixels. 

Using the periodicity property of DFT [15], the Fourier 

spectrum is shifted to the center of the frequency plane. The 

DC component, F(0, 0), is deleted, since it gives only the 

average value of the image intensity. The power spectrum is 

obtained by squaring the magnitudes of the Fourier spectrum 

signal intensity variations [15, 16] of the DW-MR image. 

The total power (TP), in the image is obtained using Eq. 1. 

Since the values of M and N are different (depend on the size 

of the particular region of the brain), the cut-off frequency, 

D0 (in cycles per pixel), which separates the lower and 

higher spatial frequency components (as shown in Fig. 1), is 

defined by Eq. 2. 
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D(u, v) is the distance from the point (u, v) to the origin of 

the frequency plane, defined by Eq. 3. 
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The Low Frequency Power (LFP) and HFP are calculated 

using Eq. 4 and 5 respectively. 
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The HFP value evaluated in the area of brain pathology is 

compared to the corresponding HFP value on the 

contralateral normal hemisphere of the same subject, to 

obtain the relative signal intensity HFP (RHFP) value. The 

RHFP value given by Eq. 6 is quantified across different 

subjects diagnosed with the brain pathology. RHFP value is 

employed in differentiating pathology tissues from healthy 

tissues and further used in deriving useful information about 

the brain pathology. 

 

Fig 1. The Fourier spectrum, F(u, v), of an image showing higher and lower 

spatial frequency regions. 

side ralcontralateon   valueHFP ingcorrespond

side ralcontralateon   valueHFP ingcorrespond
 - sidepathology on   valueHFP

  RHFP =     (6) 

The details of the calculation of HFP and RHFP values for 

cerebral infarct, ICH and brain tumor subjects are elaborated 

in our earlier studies [17, 18, 19], respectively. 

2.3. Probability Neural Network 

PNNs predominantly classifiers, are a special form of 

RBF network that can map any input pattern to a number of 

classifications. The RBF network [20] is a special class of 

multilayer feedforward networks, in which each unit in the 

hidden layer employs a RBF, such as a Gaussian kernel, as 

the activation function. The RBF is centered at the point 

specified by the weight vector associated with the unit. Both 

the positions and the widths of these kernels must be learned 

from training patterns. Each output unit implements a linear 

combination of these RBFs. Therefore, in a RBF network 

one hidden layer uses neurons with RBF activation functions 

and one output node is used to combine linearly the outputs 

of the hidden neurons. 

In the present work we have chosen a basic Matlab PNN 

[21] for its simple structure and training manner. The most 

important advantage of PNN is that training is easy and 

instantaneous. Weights are not trained but assigned. Existing 

weights are never alternated, but only new vectors are 

inserted into weight matrices while training. Further, since 

the training and running procedure can be implemented by 

matrix manipulation, the speed of PNN is very fast. The 

PNN classifies input vector into a specific class, which has 

the maximum probability of being correct. The network 

architecture of a PNN implemented in the present work is 

shown in Fig. 2. 
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Fig 2. PNN network architecture [21]. 

(Note: The symbols and notations are adopted as used by MATLAB Neural 

Network Toolbox [21]. Dimensions of arrays are marked under their names) 

The PNN employed in the present work has three layers: 

the Input Layer, Radial Basis Layer and the Competitive 

Layer. It is assumed that there are Q input vector/target 

vector pairs, with each target vector having K elements. 

Each input vector is associated with one of K classes. The 

dimension of the input vector (p) is R x 1. In radial basis 

layer, the vector distances between input vector and the 

weight vector made of each row of weight matrix (W) are 

calculated. The weights of the radial basis layer (IW1, 1) are 

set to the transpose of the matrix formed from the Q training 

pairs (P'). When an input is presented, the ||dist|| box 

produces a vector whose elements indicate how close the 

input is to the vectors of the training set. These elements are 

multiplied, element by element, by the bias and sent to the 

radbas transfer function given by Eq. 7 [21]. 

            2ne)n( −=radbas
 

 

         (7) 

The biases are all set to 0.8326/spread, where, ‘spread’ is 

the spread value of RBF. As spread becomes larger, the 

designed network takes into account several nearby design 

vectors. An input vector close to a training vector is 

represented by a number close to 1 in the output vector (a
1
). 

If an input is close to several training vectors of a single class, 

it is represented by several elements of a
1
 that are close to 1 

[21]. 

The weights of the competitive layer (LW2, 1) are set to the 

matrix of target vectors. Each vector has a 1 only in the row 

associated with that particular class of input, and 0’s 

elsewhere. The competitive layer sums these contributions 

for each class of inputs to produce as its net output a vector 

of probabilities. Finally, compete transfer function picks the 

maximum of these probabilities, and produces a 1 for that 

class and a 0 for the other classes. Thus, the network 

classifies the input vector into a specific K class because that 

class has the maximum probability of being correct [21, 22]. 

2.4. Brain Pathology Models 

Brain pathology models for the subjects with cerebral 

infarction, ICH and brain tumors (glioma and meningioma) 

using HFP parameter are developed using PNN architecture 

(Fig. 2). The PNN model is implemented by using 

MATLAB version 7.7. The data set is divided into two 

separate data sets – the training data set and the testing data 

set. The training data set is used to train the network. The 

testing data set is used to verify the accuracy and the 

effectiveness of the trained network, for the classification 

process. Spread is an important parameter for PNN, and the 

accuracy of the classification process may vary with 

different spread values. The task in designing a PNN thereby 

lies in selecting spread values for the particular classification 

problem. To facilitate choosing the spread value in the 

present work we have made use of the ‘leave one out 

method’ of cross-validation [23]. Here cross-validation is 

carried out using a single observation from the training 

sample (N) as the validation data, and the remaining 

observations (N-1) as the training data. The value of spread 

is adjusted so that the chosen data for validation from the 

training set is appropriately classified. The process is 

repeated, such that each observation in the training sample is 

used once as the validation data. By doing so we choose the 

optimal spread value, giving maximum accuracy for the 

given classification problem. The brain pathology models 

using PNN developed in the present work could help find the 

stage of cerebral infarction, stage of ICH, and differentiate 

between tumor types quantitatively, relative to the RHFP 

parameter as its input. 

3. Results and Discussions 

3.1. PNN Model for Cerebral Infarction 

A block schematic diagram of the cerebral infarction 

classification model with RHFP parameter developed using 

PNN architecture (Fig. 2) is shown in Fig. 3.  

 

Fig 3. Block schematic diagram of cerebral infarction classification model 

using RHFP. 

Studies were performed on infarct subjects to quantify the 

signal intensity variation distribution on DW-MR images, 

using RHFP values. The RHFP value evaluated from the 

infarct subjects was given as the input variable, and the 

output of the PNN block was the resulting stage of infarction 

for that subject. An attempt was made to associate the RHFP 

parameter evaluated from the infarct subjects with the 

different stages of infarction, by designing the PNN and 

training it with adequate number of input-output patterns. A 

total number of 65 data sets (split into different stages of 

infarction as shown in Table 1) were used for training the 

PNN. Similarly, a total number of 33 data sets (split into 

different stages of infarction as shown in Table 1) were used 

for testing the PNN. The spread value of the RBF was used 

as a smoothing factor and the classifier accuracy was 

examined with different values of spread. The optimal 

spread value for the classification of infarct subjects using 

RHFP parameter was found to be 5.  
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The performance of the classification model was 

evaluated as the percentage of the total number of patterns in 

the testing data set that were correctly classified. The 

number of data sets used for training, testing and the 

percentage of correct classification obtained from the PNN 

model, shown in Fig. 3, is tabulated in Table 1. It is observed 

from Table 1 that the PNN model for cerebral infarction 

using RHFP parameter was able to classify clearly (100%) 

the infarct subjects in the stages 1, 3, 4 and 5. The 

performance of the model for stage 2 could be improved by 

training with more number of corresponding input patterns. 

The developed PNN model could thereby aid in 

automatically classifying the stages of cerebral infarction, 

quantitatively, using RHFP measurements. 

Table 1. Number of data sets used for training, testing, and the number of 

correct classification obtained for tested data using cerebral infarct 

classification model with RHFP. 

Cerebral 

infarction stage 

(days) 

Number of 

data sets 

 used for 

training 

Number of 

data sets  

used for 

testing 

Percentage  

of correct 

classification 

Stage 1  

(<1) 
16 8 100 

Stage 2  

(1 – 4) 
9 6 83.33 

Stage 3  

(5 – 9) 
26 12 100 

Stage 4  

(10 – 14) 
8 4 100 

Stage 5  

(>15) 
6 3 100 

3.2. PNN Model for ICH 

A block schematic diagram of the ICH classification 

model with RHFP parameter developed using PNN 

architecture (Fig. 2) is shown in Fig. 4.  

 

Fig 4. Block schematic diagram of ICH classification model using RHFP. 

Studies were performed on ICH subjects to quantify the 

signal intensity variation distribution on DW-MR images, 

using RHFP parameter. The RHFP value evaluated from the 

ICH subjects was given as the input variable, and the output 

of the PNN block was the resulting stage of ICH for that 

subject. An attempt was made to associate the RHFP 

parameter evaluated from the ICH subjects with the different 

stages of ICH, by designing the PNN and training with 

adequate number of input-output patterns. A total number of 

28 data sets (split into different stages of ICH as shown in 

Table 2) were used for training the PNN. Similarly, a total 

number of 14 data sets (split into different stages of ICH as 

shown in Table 2) were used for testing the PNN. The spread 

value of the RBF was used as a smoothing factor and 

classifier accuracy was examined with different values of 

spread. The optimal spread value for the classification of 

ICH subjects using RHFP parameter was found to be 5.  

The performance of the classification model was 

evaluated as the percentage of the total number of patterns in 

the testing data set that were correctly classified. The 

number of data sets used for training, testing and the 

percentage of correct classification obtained from the PNN 

model, shown in Fig. 4, is tabulated in Table 2. It is observed 

from Table 2 that the PNN model for ICH using RHFP 

parameter was able to classify clearly (100%) the ICH 

subjects in all the stages of ICH. The developed PNN model 

could thereby help in classifying the stages of ICH, 

quantitatively, using RHFP measurements. 

Table 2. Number of data sets used for training, testing, and the number of 

correct classification obtained for tested data using ICH classification 

model with RHFP. 

ICH stage  

(days) 

Number of 

data sets 

used for 

training 

Number of 

data sets 

used for 

testing 

Percentage  

of correct 

classification 

Hyperacute stage 

(< 1) 
6 3 100 

Acute stage  

(1 – 7) 
3 2 100 

Late subacute stage 

(7 – 14) 
10 5 100 

Chronic stage  

(>14) 
9 4 100 

3.3. PNN Model for Brain Tumor 

A block schematic diagram of the brain tumor 

classification model with RHFP parameter developed using 

PNN architecture (Fig. 2) is shown in Fig. 5. 

 

Fig 5. Block schematic diagram of brain tumor classification model using 

RHFP. 

Studies were performed on the subjects with glioma and 

meningioma to quantify the signal intensity variation 

distribution on DW-MR images, using RHFP parameter. The 

RHFP value evaluated from the tumor subjects was given as 

the input variable, and the output of the PNN block was the 

resulting type of tumor, i.e. either glioma or meningioma. 

An attempt was made to associate the RHFP parameter 

evaluated from the tumor subjects, with the appropriate 

tumor type, by designing a PNN and training with adequate 

number of input-output patterns. A total number of 15 data 

sets with glioma and 08 data sets with meningioma were 

used for training the PNN. Similarly, a total number of 07 

data sets with glioma and 04 data sets with meningioma 

were used for testing the PNN. The spread value of the RBF 

was used as a smoothing factor and classifier accuracy was 
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examined with different values of spread. The optimal 

spread value for the classification of brain tumor subjects 

using RHFP parameter was found to be 5. 

The performance of the classification model was 

evaluated as the percentage of the total number of patterns in 

the testing data set that were correctly classified. The 

number of data sets used for training, testing and the 

percentage of correct classification obtained from the PNN 

model, shown in Fig. 5, is tabulated in Table 3. It is observed 

from Table 3 that the PNN model for brain tumor 

classification is able to differentiate clearly (100%) the 

subjects with gliomas and meningiomas. The developed 

PNN model could thereby help in the differential diagnosis 

of brain tumors, quantitatively, using RHFP measurements. 

Table 3. Number of data sets used for training, testing, and the number of 

correct classification obtained for tested data using brain tumor 

classification model with RHFP. 

Tumor type 

Number of 

data sets 

used for 

training 

Number of 

data sets  

used for 

testing 

Percentage  

of correct 

classification 

Glioma 15 7 100 

Meningioma 8 4 100 

4. Conclusion 

The PNN model developed for cerebral infarction using 

RHFP values was able to quantitatively classify the infarct 

subjects from the normal subjects. The model presented an 

overall efficiency of 96.67% in categorizing the infarct 

subjects into their respective stages. The PNN model 

developed for ICH using RHFP values was able to 

quantitatively classify the ICH subjects from the normal 

subjects, and could accurately (100%) categorize the ICH 

subjects into their respective stages. Further, the PNN model 

developed for brain tumor using RHFP values was able to 

quantitatively classify the subjects with glioma and 

meningioma, from the normal subjects, and clearly 

differentiate (100%) between the two tumor types. The 

developed PNN models could thereby positively aid in the 

speedy and accurate radiological diagnosis of the subjects 

with these brain tissue pathologies, and be helpful in 

providing treatment at the appropriate time. Therefore, the 

results in our study signify that the adoption of the proposed 

PNN models in the clinical diagnosis could be supportive 

and instructive in the progression and treatment of these 

brain pathologies. This could positively assist the medical 

personnel to consider early remedial methods in order to 

prevent the subjects from additional damage to the brain 

tissue. 
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