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Abstract 

In this paper we revisit the levitation phenomenon using the generalized Boltzmann kinetics theory which can represent the 

non-local physics of this levitation phenomenon. This approach can identify the conditions when the levitation can take 

place under the influence of correlated electromagnetic and gravitational fields. The sufficient mathematical conditions of 

levitation are obtained. It means that the regime of levitation could be realized from the position of the non-local 

hydrodynamics.  
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1. Introduction

The phenomenon of levitation has attracted attention from 

philosophers and scientists in the past and now. How can 

levitation be possible? What power or agent accomplishes it? 

The most obvious explanation - the possession of a word of 

mystical power - is not interesting here for us. 

Levitation is the process by which an object is suspended 

by a physical force against gravity, in a stable position 

without solid physical contact. Many periodicals related to 

the levitation problems exist, for example IEEE Transactions 

on: Applied Superconductivity, Automation Science and 

Engineering, Control Systems Technology, Magnetics. 

In spite of the tremendous recent advances, notably in 

power electronics, magnetic materials, on the application of 

electromagnetic suspension and levitation techniques to 

advanced ground transportation, physics of levitations needs 

in following significant investigations. In this paper we 

revisit the levitation phenomenon using the generalized 

Boltzmann kinetics theory [1 – 4] which can represent the 

non-local physics of this levitation phenomenon. 

The investigations of the levitation stability have a long 

history and are considered in details in [5 – 9]. As usual the 

problem review begins with the citation of the Earnshaw 

paper [5]. Earnshaw’s theorem depends on a mathematical 

property of the 1/r type energy potential valid for 

magnetostatic and electrostatic events and gravitation. At any 

point where there is force balance is equal to zero, the 

equilibrium is unstable because there can be no local 

minimum in the potential energy. There must be some 

loopholes though, because magnets above superconductors 

and the magnet configuration do stably levitate including 

frogs [6] and toys like levitron (spinning magnet tops), flying 

globe and so on [10, 11]. It means that diamagnetic material 

can stabilize the levitation of permanent magnets. It is well 

known that the potential energy density of the magnetic field 

can be written as 

BM ⋅−=mw                                (1.1) 

where B  is magnetic induction, M  is magnetization. Using 
the phenomenological relation 

HM χ= ,                                   (1.2) 

where χ  is magnetic susceptibility, we have for the unit 

volume of a magnetic material 
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0

Bwm µµ
χ−=                             (1.3) 

The force acting on the unit volume of a levitating object 

is 

2

0

gradB
µµ

χ=F ,                      (1.4) 

if the phenomenological parameters are constant. Diamagnets 

(for which 0<χ ) are repelled by magnetic fields and 

attracted to field minima. As a result, diamagnets can satisfy 
the stability conditions [6 – 9] and the following conditions 
are exceptions to Earnshaw’s theorem: 

a) Diamagnetism occurs in materials which have a relative 

permeability less than one. The result is that eddy currents 

are induced in a diamagnetic material, it will repel magnetic 

flux. 

b) The Meissner effect which occurs in superconductors. 

Superconductors have zero internal resistance. As such 

induced currents tend to persist, and as a result the magnetic 

field they cause will persist as well. 

c) As result of oscillations, when an alternating current is 

passed through an electromagnet, it behaves like a 

diamagnetic material. 

d) Rotation: employed by the Levitron, it uses gyroscopic 

motion to overcome levitation instability. 

e) Feedback can be used in conjunction with 

electromagnets to dynamically adjust magnetic flux in order 

to maintain levitation. 

The main shortcoming of the Earnshaw theory consists in 

application of principles of local physics to the non-

equilibrium non-local statistical systems. 

The aim of this paper consists in application of the non-

local physics methods to the effect of levitation. We intend to 

answer two questions: 

1) Is it possible to formulate the sufficient conditions of 

levitation from the position of the unified non-local theory of 

transport processes (UNTT) [see, for example, 1 – 4]? 

2) Is it possible to speak about the mutual influence of 

electromagnetic field and gravitation in the frame of UNTT? 

2. Basic Equations 

Non-local hydrodynamic equations have the form [1 - 4]: 

(continuity equation for a mixture) 
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(motion equation) 
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(energy equation) 
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where 
0v  is the hydrodynamic velocity in the coordinate 

system at rest, 
αρ  is the density of α - species, p  is the 

pressure, I
�

- unit tensorе, ( )1

αF  is the force of the non-

nonmagnetic origin acting on the unit of volume, αε  is the 

internal energy of a particle of the α - species, τ  is non-

local parameter.  

Important remarks: 

1. Equations (2.1) – (2.3) should be considered as local 

approximation of non-local equations (NLE) written in the 

hydrodynamic form. NLE include quantum hydrodynamics 

of Schrödinger – Madelung as a deep particular case [4] and 

can be applied in the frame of the unified theory from the 

atom scale to the Universe evolution. 

2. The basic system contains the cross terms for the forces 

of the mass and electro- magneto-dynamic origin. It means 

that the fluctuation of the gravitational field leads to the 

electro- magneto dynamical fluctuations and verse versa. 

Sufficient conditions of levitation can be obtained from 

Eqs. (2.1) – (2.3) after equalizing all terms containing forces 

to zero. Namely, from the continuity equation 
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from the motion equation follows 
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and from the energy equation we find  
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From Eq. (2.4) we have 
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where L  is constant vector. Let us introduce vector ( )tαL  

( ) ,0

)1()0(









×+= BvFL α

α

α
αααα ρρτ

m

q
t

           (2.9) 

and rewrite now Eq. (2.5), which contains the density 
fluctuation [1] 
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where 

fla

ααα ρρρ −= .                                                   (2.12) 

Using also (2.9), we find 
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The vector product in Eq. (2.13) can be transformed as 

( ) ( )[ ]BvBvBFBL ⋅−−×=× 0

2

0

)0()1()0( Bnqt ααααααα τρτ                      (2.14) 

where αα nq  is the charge of α -species in the unit volume. 

Taking into account the relations (2.10), (2.11), (2.12), we can realize the analogical transformation of the energy condition 

(2.6): 



55 Boris V. Alexeev:  To the Non-Local Theory of Levitation  
 

( )

[ ]

[ ]

∑∑

∑

∑∑∑

⋅−⋅+











































×+

+×+++Ι⋅+⋅
⋅+








 Ι⋅+






 ⋅+⋅+⋅=⋅

α
ααα

α
ααα

α

α

α
α

α

αα
αααααααα

α

α
ααααααα

α
α

α
αα

τε
∂
∂

ρρρ
τ

∂
∂

∂
∂

∂
∂ρ

∂
∂ρτρτ

∂
∂ρ

LFL
r

Bv

BvFFFvvF

r

r
v

r
v

v
FvFFv

)1()0(

0

0

2

0)1()1(2

0

)1(

00

)1(

)0(

00
0)1()0(

0

)1()0()1(

0

2

5

22

3

2

1

n

m

q
p

m

qv
pvp

p
tt

a

�

�

        (2.15) 

Equations (2.7), (2.13) and (2.15) define the system of the 
sufficient conditions for levitation. 

The choice of the non-local parameter needs in the special 
consideration [3, 4]. The system of equations (2.1) – (2.3) 
convert in the system of quantum hydrodynamic equations by 

the suitable choice of the non-local parameter τ . The 

relation between τ  and kinetic energy [3, 4] is used in 

quantum hydrodynamics 

2mu
H=τ ,                                (2.16) 

where u  is the particle velocity, H  is the coefficient of 

proportionality which reflects the state of the physical system. 

In the simplest case H  is equal to the Plank constant ℏ  and 
the corresponding relation (2.16) correlates with the 
Heisenberg inequality. From the first glance the 
approximation (2.16) is distinguished radically from the 
kinetic relation known from the theory of the rarefied gases 

p
υρτ Π= ,                             (2.17) 

which is used for the calculation of the non-local parameter 

in the macroscopic hydrodynamic case (υ  is the kinematic 

viscosity). But it is not a case. In quantum approximation the 

value mqu /ℏ=υ  has the dimension [ scm /2 ] and can be 

called as quantum viscosity, for the electron species 

1577.1/ == e

qu mℏυ  scm /2 . If we take into account that the 

value 2~/ Vp ρ , then the interrelation of (2.16) and (2.17) 

becomes obvious. 

3. Some Particular Cases of the 

Levitation Conditions 

Write down the system of the sufficient levitation 

conditions for the quasi-stationary case neglecting dissipation 

and the space derivatives in Eq. (2.13). We find 
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Introducing the current density 

0
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one obtains 
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The right-hand-side of Eq. (3.4) contains the cross terms 

for the forces of the mass and electro- magneto-dynamic 

origin. The last term in Eq. (3.4) can be written also in the 

form 

[ ] ( ){ }∑∑ ⋅−







=××

α α

α
αα

α
α

α

α τρ BvBvBjB 0

2

0

2

)0(
B

m

q

m

q .    (3.5) 

Taking into account (2.16), (2.17) it is naturally to suppose 

that 

ℏ≥)0(

ατTkB
,                                  (3.6) 

Introduce now 

Tk
A

B
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ατ ,                                  (3.7) 

where A  is a parameter which leads to appearance the 

effective temperature 
effT . Other approximations can be used, 

for example 

effBTk ,

)0(

α
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Let us consider now other particular case when 00 =v . In 

equations (2.7), (2.13) and (2.15) we conserve the terms up to 

the )0(

ατ  order. From Eq. (2.13) follows 

( ) ( ) ,)1(
BLLF ×−= ∑∑ t

m

q
t

t

a

α
α α

α

α
αα ∂

∂ρ               (3.9) 

where now 

( ) ,)1()0(

αααα ρτ FL =t                        (3.10) 

( ) ∑=
α

ααα ρτ )1()0( FL t .                      (3.11) 



International Journal of Astronomy, Astrophysics and Space Science 2014; 1(5): 52-58  56 
 

Then 

BFFF ×−= ∑∑∑ )1()0()1()0()1(

αα
α

αα
α

ααα
α

αα τρτ
∂
∂ρ aaa nq
t

.    (3.12) 

Introduce the explicit expression for the mass force 
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in Eq. (3.9) 
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where ααα ρ mn aa /= . From Eq. (3.14) follows 

)0(

2

)0()0()0()1(

α
α

α
α

α
α

α
ααα

α
αα

α
αα

α
αα τρττ

∂
∂ρτ

∂
∂ρ ∑∑∑∑∑ 








×−×−







+= aaaaa

m

q
nqqn

tt
BEBgEgF .          (3.15) 

Let us introduce in Eq. (3.15) the Umov – Pointing vector S  and Alexeev vector 
AS  in the forms 

BES ×= ,                                                      (3.16) 
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.                                                     (3.17) 

In this case 
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For the approximation (3.7) one obtains 
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where the average charge density is introduced 
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The analogical transformations of the energy condition (2.15) can be realized for this particular case when 00 =a
v . Namely 
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For the approximation (3.7) we find from Eq. (3.21) 
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Eq. (3.22) should be considered as a relation defining the 

energy consumption needed for the levitation. 

From (3.13) follows a relation 
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which can be used for the transformation of Eq. (3.22). For a 

tentative estimate we can omit the derivatives of the 

logarithmic terms and the time derivatives for a quasi-neutral 

media. As a result from (3.22) 
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For a quasi-neutral media 
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where 

∑=Ξ
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ααε an , anααα ε=Ξ .                       (3.27) 

Let us obtain a tentative estimate from (3.19) for the quasi-

stationary case in a quasi-neutral media. From (3.18) for the 

case under consideration we have 
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From (3.23), (3.28) we find 
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in the case of (3.7) approximation. Relation leads in SI to the 

estimate 
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The following Table 1 lists known examples of number 

densities at 1 atm and 20 °C, unless otherwise noted. 

Table 1. Molecular number density and related parameters of some 

materials 

Material Number density (n) Density ( ) 

Units ( 2710
3m− ) or ( 2110  3cm− ) ( 310  kg/ 3m ) or (g/ 3cm ) 

dry air 0.02504 1.2041×10−3 
water 33.3679 0.9982 
diamond 176.2 3.513 

Let us use now (1.4) and the obvious phenomenological 

condition of the force balance (see also [9]) we have 
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ρ
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where ρ  is the mass density of the material to be levitated 

and 
zê  is the unit vector in the vertical direction, magnetic 

susceptibility χ  is negative for diamagnetic materials. In the 

frame of the phenomenological description of the magnetic 
and gravitational field we have 
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A necessary condition for stability is 

0<⋅∫ sF d
S
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where S  is any small closed surface surrounding the 

equilibrium point. It leads to the condition 
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This relation leads to the stability condition 
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if 0<χ  (diamagnetic materials) and 02 >∆B . The 

corresponding stability investigation from the 
phenomenological point of view was realized in [6]. 

From the relation (3.33) follows ( 1~µ ) 
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if the non-local parameter does not depend on the sort of 

species α . After equalizing the right-hand-sides of relations 

(3.38) and (3.39) one obtains 
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Let us introduce the character length 
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hence from (3.40), (3.42) 
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Introduce the electromotive force (EMF) for a particle 

Elmind =Ε ,                        (3.44) 

and for a

en  particles 

a

emnind Enl=Ε ,
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Hence from (3.43), (3.45) we find 
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Formally Eq. (3.46) can be written in the form of Faraday's 

law of induction, the most widespread version of this law 

states that the induced electromotive force in any closed 

circuit is equal to the rate of change of the magnetic flux 

through the circuit: 

t
B
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where 
BΦ  is the magnetic flux. This version of Faraday's law 

strictly holds only when the closed circuit is a loop of 
infinitely thin wire and is invalid in some other 
circumstances. Nevertheless formally 
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After introduction of the character counter square 
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we reach the relation in the form of Faraday’s law 
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B
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4. Conclusion 

The following conclusions of the principal significance 

can be done: 

1. The levitation effects are the direct consequence of the 

non-local equations (2.1) – (2.3). 

2. The sufficient conditions of levitation are the particular 

case of Eqs. (2.1) – (2.3). 

3. The strict theory of levitation can be constructed only in 

the frame of non-local physics. 

4. Fluctuations of the gravitational field lead to the electro- 

magneto dynamical fluctuations and verse versa. This fact 

can effect on the work of electronic devices during the 

evolution of the wave atmospheric fronts. 
5. Levitation effects are connected not only with the 

electro-magnetic energy flux S , but also with the cross flux 

AS .  

6. Usual local conditions of levitation are the deep 

particular cases of the non-local theory. 
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